This dlib-based facial login system

Overview

Facial-Login-System

This dlib-based facial login system is a technology capable of matching a human face from a digital webcam frame capture against a database[number of Numpy Arrays - 128 computer 128-d (i.e., a list of 128 real-valued numbers) that is used to quantify the face] of faces, typically employed to authenticate users through ID verification services, works by pinpointing and measuring facial features from a given image.

INSTALLATION-

Before using the code, first make sure you have installed the appropriate Python Libraries! Or else, the code won't execute!

LIST -

#1. I'm assuming you are already familiar with the OpenCV Python library used in the Computer Vision Field. (i.e., pip install opencv-contrib-python) - Pre-built CPU-only OpenCV package.

#2. Install a .cpp[C++] based compiler so that the dlib python library will execute on Python platform! (i.e., Install Visual Studio Community 2019 and in the Workloads, select "DESKTOP DEVELOPMENT WITH C++")

#3. Install DLib python library using pip command! Dlib is a general purpose cross-platform software library written in the programming language C++. You will have trouble installing these packages. Refer to online sources to install these python packages! (i.e., pip install dlib) - This command tries to download either (.whl - wheel file) or (.tar.gz - tar ball file) from https://pypi.org/project/dlib/#files

#4. Install CMake python library! (i.e., pip install cmake) - CMake is used to control the software compilation process using simple platform and compiler independent configuration files, and generate native makefiles and workspaces that can be used in the compiler environment of your choice.

#5. And finally, install Face Recognition Library that makes use of DLib and all the other previously mentioned libraries! (i.e., pip install face-recognition) - Recognize and manipulate faces from Python or from the command line with the world’s simplest face recognition library. Built using dlib’s state-of-the-art face recognition built with deep learning. The model has an accuracy of 99.38% on the Labeled Faces in the Wild benchmark.

#6. This next library is important only if you are using the code for "Facial-Login-Via-Internet" folder! (i.e., pip install imagekitio) - library for storing images online! Make sure you register and get the keys arranged for yourself!

from imagekitio import ImageKit
imagekit = ImageKit(
    private_key='your private_key',
    public_key='your public_key',
    url_endpoint = 'your url_endpoint'
)

NOTE: It's not necessary if you use the code for "Facial-Login-Via-No-Internet", because there it only uses numpy(.npy) files to store the 128-d array data of your face landmarks and uses them to authenticate!

HOW TO USE IT-

There's no explanation required on how to use the code as it's pretty self-explanatory and easy to use!

Owner
Mushahid Ali
Strong in design and integration with intuitive problem-solving skills. Proficient in front end and back end web development.
Mushahid Ali
Training a Resilient Q-Network against Observational Interference, Causal Inference Q-Networks

Obs-Causal-Q-Network AAAI 2022 - Training a Resilient Q-Network against Observational Interference Preprint | Slides | Colab Demo | Environment Setup

23 Nov 21, 2022
MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet.

Lightweight-Detection-and-KD MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet. This repo also includes detection knowledge di

Egqawkq 12 Jan 05, 2023
[NeurIPS 2020] Blind Video Temporal Consistency via Deep Video Prior

pytorch-deep-video-prior (DVP) Official PyTorch implementation for NeurIPS 2020 paper: Blind Video Temporal Consistency via Deep Video Prior TensorFlo

Yazhou XING 90 Oct 19, 2022
TensorFlow implementation of "TokenLearner: What Can 8 Learned Tokens Do for Images and Videos?"

TokenLearner: What Can 8 Learned Tokens Do for Images and Videos? Source: Improving Vision Transformer Efficiency and Accuracy by Learning to Tokenize

Aritra Roy Gosthipaty 23 Dec 24, 2022
Pytorch implementation of VAEs for heterogeneous likelihoods.

Heterogeneous VAEs Beware: This repository is under construction 🛠️ Pytorch implementation of different VAE models to model heterogeneous data. Here,

Adrián Javaloy 35 Nov 29, 2022
Sum-Product Probabilistic Language

Sum-Product Probabilistic Language SPPL is a probabilistic programming language that delivers exact solutions to a broad range of probabilistic infere

MIT Probabilistic Computing Project 57 Nov 17, 2022
Convert Table data to approximate values with GUI

Table_Editor Convert Table data to approximate values with GUIs... usage - Import methods for extension Tables. Imported method supposed to have only

CLJ 1 Jan 10, 2022
CUda Matrix Multiply library.

cumm CUda Matrix Multiply library. cumm is developed during learning of CUTLASS, which use too much c++ template and make code unmaintainable. So I de

49 Dec 27, 2022
Deeply Supervised, Layer-wise Prediction-aware (DSLP) Transformer for Non-autoregressive Neural Machine Translation

Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision Training Efficiency We show the training efficiency of our DSLP model b

Chenyang Huang 36 Oct 31, 2022
Certifiable Outlier-Robust Geometric Perception

Certifiable Outlier-Robust Geometric Perception About This repository holds the implementation for certifiably solving outlier-robust geometric percep

83 Dec 31, 2022
Code for Discriminative Sounding Objects Localization (NeurIPS 2020)

Discriminative Sounding Objects Localization Code for our NeurIPS 2020 paper Discriminative Sounding Objects Localization via Self-supervised Audiovis

51 Dec 11, 2022
tsai is an open-source deep learning package built on top of Pytorch & fastai focused on state-of-the-art techniques for time series classification, regression and forecasting.

Time series Timeseries Deep Learning Pytorch fastai - State-of-the-art Deep Learning with Time Series and Sequences in Pytorch / fastai

timeseriesAI 2.8k Jan 08, 2023
CoCosNet v2: Full-Resolution Correspondence Learning for Image Translation

CoCosNet v2: Full-Resolution Correspondence Learning for Image Translation (CVPR 2021, oral presentation) CoCosNet v2: Full-Resolution Correspondence

Microsoft 308 Dec 07, 2022
It's final year project of Diploma Engineering. This project is based on Computer Vision.

Face-Recognition-Based-Attendance-System It's final year project of Diploma Engineering. This project is based on Computer Vision. Brief idea about ou

Neel 10 Nov 02, 2022
Energy consumption estimation utilities for Jetson-based platforms

This repository contains a utility for measuring energy consumption when running various programs in NVIDIA Jetson-based platforms. Currently TX-2, NX, and AGX are supported.

OpenDR 10 Jun 17, 2022
This is the 3D Implementation of 《Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical Image Segmentation》

CoraNet This is the 3D Implementation of 《Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical Image Segmentation》 Environment pytor

25 Nov 08, 2022
Python code for the paper How to scale hyperparameters for quickshift image segmentation

How to scale hyperparameters for quickshift image segmentation Python code for the paper How to scale hyperparameters for quickshift image segmentatio

0 Jan 25, 2022
A Novel Plug-in Module for Fine-grained Visual Classification

Pytorch implementation for A Novel Plug-in Module for Fine-Grained Visual Classification. fine-grained visual classification task.

ChouPoYung 109 Dec 20, 2022
TensorFlow implementation of AlexNet and its training and testing on ImageNet ILSVRC 2012 dataset

AlexNet training on ImageNet LSVRC 2012 This repository contains an implementation of AlexNet convolutional neural network and its training and testin

Matteo Dunnhofer 161 Nov 25, 2022