Exploring Visual Engagement Signals for Representation Learning

Related tags

Deep Learningvise
Overview

Exploring Visual Engagement Signals for Representation Learning

Menglin Jia, Zuxuan Wu, Austin Reiter, Claire Cardie, Serge Belongie and Ser-Nam Lim
Cornell University, Facebook AI


arXiv: https://arxiv.org/abs/2104.07767

common supervisory signals
VisE as supervisory signals.

VisE is a pretraining approach which leverages Visual Engagement clues as supervisory signals. Given the same image, visual engagement provide semantically and contextually richer information than conventional recognition and captioning tasks. VisE transfers well to subjective downstream computer vision tasks like emotion recognition or political bias classification.

💬 Loading pretrained models

NOTE: This is a torchvision-like model (all the layers before the last global average-pooling layer.). Given a batch of image tensors with size (B, 3, 224, 224), the provided models produce spatial image features of shape (B, 2048, 7, 7), where B is the batch size.

Loading models with torch.hub

Get the pretrained ResNet-50 models from VisE in one line!

VisE-250M (ResNet-50): this model is pretrained with 250 million public image posts.

import torch
model = torch.hub.load("KMnP/vise", "resnet50_250m", pretrained=True)

VisE-1.2M (ResNet-50): This model is pretrained with 1.23 million public image posts.

import torch
model = torch.hub.load("KMnP/vise", "resnet50_1m", pretrained=True)

Loading models manually

Arch Size Model
VisE-250M ResNet-50 94.3 MB download
VisE-1.2M ResNet-50 94.3 MB download

If you encounter any issues with torch.hub, alternatively you can download the model checkpoints manually, and then following the script below.

import torch
import torchvision

# Create a torchvision resnet50 with randomly initialized weights.
model = torchvision.models.resnet50(pretrained=False)

# Get the model before the global aver-pooling layer.
model = torch.nn.Sequential(*list(model.children())[:-2])

# load the pretrained model from a local path: <CHECKPOINT_PATH>:
model.load_state_dict(torch.load(CHECKPOINT_PATH))

💬 Citing VisE

If you find VisE useful in your research, please cite the following publication.

@misc{jia2021vise,
      title={Exploring Visual Engagement Signals for Representation Learning}, 
      author={Menglin Jia and Zuxuan Wu and Austin Reiter and Claire Cardie and Serge Belongie and Ser-Nam Lim},
      year={2021},
      eprint={2104.07767},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

💬 Acknowledgments

We thank Marseille who was featured in the teaser photo.

💬 License

VisE models are released under the CC-BY-NC 4.0 license. See LICENSE for additional details.

Owner
Menglin Jia
K-Mn-P: "jia meng lin" (mandarin pronunciation of those chemical elements)
Menglin Jia
Affine / perspective transformation in Pose Estimation with Tensorflow 2

Pose Transformation Affine / Perspective transformation in Pose Estimation with Tensorflow 2 Introduction 이 repo는 pose estimation을 연구하고 개발하는 데 도움이 되기

Kim Junho 1 Dec 22, 2021
LLVIP: A Visible-infrared Paired Dataset for Low-light Vision

LLVIP: A Visible-infrared Paired Dataset for Low-light Vision Project | Arxiv | Abstract It is very challenging for various visual tasks such as image

CVSM Group - email: <a href=[email protected]"> 377 Jan 07, 2023
Code for the paper One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation, CVPR 2021.

One Thing One Click One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation (CVPR2021) Code for the paper One Thi

44 Dec 12, 2022
This repo generates the training data and the model for Morpheus-Deblend

Morpheus-Deblend This repo generates the training data and the model for Morpheus-Deblend. This is the active development repo for the project and as

Ryan Hausen 2 Apr 18, 2022
Unofficial implementation of Pix2SEQ

Unofficial-Pix2seq: A Language Modeling Framework for Object Detection Unofficial implementation of Pix2SEQ. Please use this code with causion. Many i

159 Dec 12, 2022
Reinforcement Learning for Automated Trading

Reinforcement Learning for Automated Trading This thesis has been realized for the obtention of the Master's in Mathematical Engineering at the Polite

Pierpaolo Necchi 80 Jun 19, 2022
EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration

EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration Ruikang Xu, Zeyu Xiao, Jie Huang, Yueyi Zhang, Zhiwei Xiong. EDPN: Enhanced Deep Pyra

69 Dec 15, 2022
Rule Based Classification Project For Python

Rule-Based-Classification-Project (ENG) Business Problem: A game company wants to create new level-based customer definitions (personas) by using some

Deniz Can OĞUZ 4 Oct 29, 2022
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Don’t be Contradicted with Anything!CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System This repository contains the PyTorch im

Libo Qin 25 Sep 06, 2022
Calculates carbon footprint based on fuel mix and discharge profile at the utility selected. Can create graphs and tabular output for fuel mix based on input file of series of power drawn over a period of time.

carbon-footprint-calculator Conda distribution ~/anaconda3/bin/conda install anaconda-client conda-build ~/anaconda3/bin/conda config --set anaconda_u

Seattle university Renewable energy research 7 Sep 26, 2022
Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021

Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021 [WIP] The code for CVPR 2021 paper 'Disentangled Cycle Consistency for H

ChongjianGE 94 Dec 11, 2022
Unimodal Face Classification with Multimodal Training

Unimodal Face Classification with Multimodal Training This is a PyTorch implementation of the following paper: Unimodal Face Classification with Multi

Wenbin Teng 3 Jul 06, 2022
Framework for abstracting Amiga debuggers and access to AmigaOS libraries and devices.

Framework for abstracting Amiga debuggers. This project provides abstration to control an Amiga remotely using a debugger. The APIs are not yet stable

Roc Vallès 39 Nov 22, 2022
Datasets and source code for our paper Webly Supervised Fine-Grained Recognition: Benchmark Datasets and An Approach

Introduction Datasets and source code for our paper Webly Supervised Fine-Grained Recognition: Benchmark Datasets and An Approach Datasets: WebFG-496

21 Sep 30, 2022
Diabet Feature Engineering - Predict whether people have diabetes when their characteristics are specified

Diabet Feature Engineering - Predict whether people have diabetes when their characteristics are specified

Şebnem 6 Jan 18, 2022
Modular Probabilistic Programming on MXNet

MXFusion | | | | Tutorials | Documentation | Contribution Guide MXFusion is a modular deep probabilistic programming library. With MXFusion Modules yo

Amazon 100 Dec 10, 2022
Official implementation of ACTION-Net: Multipath Excitation for Action Recognition (CVPR'21).

ACTION-Net Official implementation of ACTION-Net: Multipath Excitation for Action Recognition (CVPR'21). Getting Started EgoGesture data folder struct

V-Sense 171 Dec 26, 2022
PyTorch and Tensorflow functional model definitions

functional-zoo Model definitions and pretrained weights for PyTorch and Tensorflow PyTorch, unlike lua torch, has autograd in it's core, so using modu

Sergey Zagoruyko 590 Dec 22, 2022
This project is a loose implementation of paper "Algorithmic Financial Trading with Deep Convolutional Neural Networks: Time Series to Image Conversion Approach"

Stock Market Buy/Sell/Hold prediction Using convolutional Neural Network This repo is an attempt to implement the research paper titled "Algorithmic F

Asutosh Nayak 136 Dec 28, 2022
A more easy-to-use implementation of KPConv based on PyTorch.

A more easy-to-use implementation of KPConv This repo contains a more easy-to-use implementation of KPConv based on PyTorch. Introduction KPConv is a

Zheng Qin 36 Dec 29, 2022