Exploring Visual Engagement Signals for Representation Learning

Related tags

Deep Learningvise
Overview

Exploring Visual Engagement Signals for Representation Learning

Menglin Jia, Zuxuan Wu, Austin Reiter, Claire Cardie, Serge Belongie and Ser-Nam Lim
Cornell University, Facebook AI


arXiv: https://arxiv.org/abs/2104.07767

common supervisory signals
VisE as supervisory signals.

VisE is a pretraining approach which leverages Visual Engagement clues as supervisory signals. Given the same image, visual engagement provide semantically and contextually richer information than conventional recognition and captioning tasks. VisE transfers well to subjective downstream computer vision tasks like emotion recognition or political bias classification.

💬 Loading pretrained models

NOTE: This is a torchvision-like model (all the layers before the last global average-pooling layer.). Given a batch of image tensors with size (B, 3, 224, 224), the provided models produce spatial image features of shape (B, 2048, 7, 7), where B is the batch size.

Loading models with torch.hub

Get the pretrained ResNet-50 models from VisE in one line!

VisE-250M (ResNet-50): this model is pretrained with 250 million public image posts.

import torch
model = torch.hub.load("KMnP/vise", "resnet50_250m", pretrained=True)

VisE-1.2M (ResNet-50): This model is pretrained with 1.23 million public image posts.

import torch
model = torch.hub.load("KMnP/vise", "resnet50_1m", pretrained=True)

Loading models manually

Arch Size Model
VisE-250M ResNet-50 94.3 MB download
VisE-1.2M ResNet-50 94.3 MB download

If you encounter any issues with torch.hub, alternatively you can download the model checkpoints manually, and then following the script below.

import torch
import torchvision

# Create a torchvision resnet50 with randomly initialized weights.
model = torchvision.models.resnet50(pretrained=False)

# Get the model before the global aver-pooling layer.
model = torch.nn.Sequential(*list(model.children())[:-2])

# load the pretrained model from a local path: <CHECKPOINT_PATH>:
model.load_state_dict(torch.load(CHECKPOINT_PATH))

💬 Citing VisE

If you find VisE useful in your research, please cite the following publication.

@misc{jia2021vise,
      title={Exploring Visual Engagement Signals for Representation Learning}, 
      author={Menglin Jia and Zuxuan Wu and Austin Reiter and Claire Cardie and Serge Belongie and Ser-Nam Lim},
      year={2021},
      eprint={2104.07767},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

💬 Acknowledgments

We thank Marseille who was featured in the teaser photo.

💬 License

VisE models are released under the CC-BY-NC 4.0 license. See LICENSE for additional details.

Owner
Menglin Jia
K-Mn-P: "jia meng lin" (mandarin pronunciation of those chemical elements)
Menglin Jia
CARL provides highly configurable contextual extensions to several well-known RL environments.

CARL (context adaptive RL) provides highly configurable contextual extensions to several well-known RL environments.

AutoML-Freiburg-Hannover 51 Dec 28, 2022
Unsupervised Foreground Extraction via Deep Region Competition

Unsupervised Foreground Extraction via Deep Region Competition [Paper] [Code] The official code repository for NeurIPS 2021 paper "Unsupervised Foregr

28 Nov 06, 2022
STEAL - Learning Semantic Boundaries from Noisy Annotations (CVPR 2019)

STEAL This is the official inference code for: Devil Is in the Edges: Learning Semantic Boundaries from Noisy Annotations David Acuna, Amlan Kar, Sanj

469 Dec 26, 2022
Codes for [NeurIPS'21] You are caught stealing my winning lottery ticket! Making a lottery ticket claim its ownership.

You are caught stealing my winning lottery ticket! Making a lottery ticket claim its ownership Codes for [NeurIPS'21] You are caught stealing my winni

VITA 8 Nov 01, 2022
The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL), NeurIPS-2021

Directed Graph Contrastive Learning The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL). In this paper, we present the first con

Tong Zekun 28 Jan 08, 2023
Code for the ICCV'21 paper "Context-aware Scene Graph Generation with Seq2Seq Transformers"

ICCV'21 Context-aware Scene Graph Generation with Seq2Seq Transformers Authors: Yichao Lu*, Himanshu Rai*, Cheng Chang*, Boris Knyazev†, Guangwei Yu,

Layer6 Labs 37 Dec 18, 2022
Unofficial implementation of One-Shot Free-View Neural Talking Head Synthesis

face-vid2vid Usage Dataset Preparation cd datasets wget https://yt-dl.org/downloads/latest/youtube-dl -O youtube-dl chmod a+rx youtube-dl python load_

worstcoder 68 Dec 30, 2022
Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image

NonCuboidRoom Paper Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image Cheng Yang*, Jia Zheng*, Xili Dai, Rui Tang, Yi Ma, Xiao

67 Dec 15, 2022
Change Detection in SAR Images Based on Multiscale Capsule Network

SAR_CD_MS_CapsNet Code for the paper "Change Detection in SAR Images Based on Multiscale Capsule Network" , IEEE Geoscience and Remote Sensing Letters

Feng Gao 21 Nov 29, 2022
NeurIPS'21 Tractable Density Estimation on Learned Manifolds with Conformal Embedding Flows

NeurIPS'21 Tractable Density Estimation on Learned Manifolds with Conformal Embedding Flows This repo contains the code for the paper Tractable Densit

Layer6 Labs 4 Dec 12, 2022
MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet.

Lightweight-Detection-and-KD MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet. This repo also includes detection knowledge di

Egqawkq 12 Jan 05, 2023
OpenMMLab Semantic Segmentation Toolbox and Benchmark.

Documentation: https://mmsegmentation.readthedocs.io/ English | 简体中文 Introduction MMSegmentation is an open source semantic segmentation toolbox based

OpenMMLab 5k Dec 31, 2022
Code for paper PairRE: Knowledge Graph Embeddings via Paired Relation Vectors.

PairRE Code for paper PairRE: Knowledge Graph Embeddings via Paired Relation Vectors. This implementation of PairRE for Open Graph Benchmak datasets (

Alipay 65 Dec 19, 2022
MaskTrackRCNN for video instance segmentation based on mmdetection

MaskTrackRCNN for video instance segmentation Introduction This repo serves as the official code release of the MaskTrackRCNN model for video instance

411 Jan 05, 2023
Polyp-PVT: Polyp Segmentation with Pyramid Vision Transformers (arXiv2021)

Polyp-PVT by Bo Dong, Wenhai Wang, Deng-Ping Fan, Jinpeng Li, Huazhu Fu, & Ling Shao. This repo is the official implementation of "Polyp-PVT: Polyp Se

Deng-Ping Fan 102 Jan 05, 2023
A solution to ensure Crowd Management with Contactless and Safe systems.

CovidTrack A Solution to ensure Crowd Management with Contactless and Safe systems. ML Model Mask Detection Social Distancing Detection Analytics Page

Om Khare 1 Nov 10, 2021
MPI Interest Group on Algorithms on 1st semester 2021

MPI Algorithms Interest Group Introduction Lecturer: Steve Yan Location: TBA Time Schedule: TBA Semester: 1 Useful URLs Typora: https://typora.io Goog

Ex10si0n 13 Sep 08, 2022
This is a pytorch implementation for the BST model from Alibaba https://arxiv.org/pdf/1905.06874.pdf

Behavior-Sequence-Transformer-Pytorch This is a pytorch implementation for the BST model from Alibaba https://arxiv.org/pdf/1905.06874.pdf This model

Jaime Ferrando Huertas 83 Jan 05, 2023
CurriculumNet: Weakly Supervised Learning from Large-Scale Web Images

CurriculumNet Introduction This repo contains related code and models from the ECCV 2018 CurriculumNet paper. CurriculumNet is a new training strategy

156 Jul 04, 2022
This repository is for DSA and CP scripts for reference.

dsa-script-collections This Repo is the collection of DSA and CP scripts for reference. Contents Python Bubble Sort Insertion Sort Merge Sort Quick So

Aditya Kumar Pandey 9 Nov 22, 2022