Automatic tool focused on deriving metallicities of open clusters

Overview

metalcode

Automatic tool focused on deriving metallicities of open clusters. Based on the method described in Pöhnl & Paunzen (2010, https://ui.adsabs.harvard.edu/abs/2010A%26A...514A..81P/abstract).

Description

This is the version 1.0 of the automated version of the procedure devised by Pöhnl & Paunzen (2010). The tool is focused on calculating metallicities Z (and logAge) of open clusters, assuming that accurate values of reddening and distance are provided (determined by independent methods). Before the code is applied, data for the cluster members (photometric brightness and colour) need to be prepared together with a file containing the list of clusters together with additional parameters. Examples of the data files are provided with the code. The code is applicable to Johnson (V,B-V), Gaia (G,BP-RP) and 2MASS (J,J-Ks) photometric systems.

The run-time of the code will depend on the total number of clusters in the included list, on the number of cluster members, and on the user input parameters. For example, if user inputs:

  • age_step=0.2
  • z_step=0.005
  • Nredd=5
  • Niter=6

code will return results within 1-2 min for a typical open cluster. However, it can run for longer in the case of a larger cluster (for the included example of NGC 6791, the code returned results after 20 min). Furthermore, the specific run-time is also hardware-dependent (the code was tested on AMD Ryzen 3 PRO 4450U).

See Piecka & Paunzen (submitted) for a full description of the methods applied in the code.

Requirements

In order to run the code, user must have installed Python 3 with numpy. The other libraries (matplotlib, time, os) are not required for the proper functionality of the code, but provide additional information useful information (e.g. figures).

The code was tested on the following operating systems:

  • Windows 10
  • Ubuntu 20.04 LTS
  • Fedora 34

Installation

Only Python 3 and the mentioned libraries need to be installed. Otherwise, no additional installation is needed.

Usage

To launch the tool, run the script metalcode_v1_0.py. For successful application of the tool, a cluster list and the associated data files need to be included prior to running the script.

Input

We describe several data files in this section of the documentation. As column separation, we use spaces between values. Furthermore, isochrone grids are required for the code to run. The included grids (logAge=6.6..10.0, Z=0.005..0.040, delta_logAge=0.1, delta_Z=0.005) are for the three photometric systems described below. The isochrones should be included in the main folder, the other files (described below) should be located in the clusters folder.

On the input (before the code is executed), the user must provide a file containing the list of clusters together with additional parameters (_complete.txt in clusters folder). The structure of this file adheres to the following format (the first line of the file is skipped on loading):

CLUSTER_NAME   GAL_LATITUDE_deg   PARALLAX_mas   DISTANCE_pc   E(B-V)_mag
...            ...                ...            ...           ...

The cluster name should be written as one word (spaces should be replaced by underscores). Galactic latitude and parallax are not necessary - they should be used only if reddening is taken from extinction maps (in that case, expcor parameter in the code should be changed to 1). If the reddening value is not known and there is no good guess, set the value to be any negative value. The code will then use a pre-determined set of reddening values (in magnitudes: 0.010, 0.040, 0.080, 0.125, 0.250, 0.500, 0.750, 1.000, 1.500, 2.000).

Secondly, a set of files containing cluster data is required. The cluster data should be provided for the specific photometric system, and the file name should coincide with CLUSTER_NAME_X, where the suffix X should be replaced by the following:

  • G for Gaia (G, BP-RP)
  • 2 for 2MASS (J, J-Ks)
  • J for Johnson (V, B-V)

The first line of the data file is skipped. The columns should follow the given format (in mag):

PHOTOMETRIC_BRIGHTNESS   PHOTOMETRIC_COLOUR
...                      ...

We strongly suggest that the users pre-analyse the colour-magnitude diagrams. Obvious binary sequences, white dwarfs, and possible other clear outliers should be removed in advance. This is necessary in the current version of the code due to the limitations of the included isochrone fitting sub-procedure.

Finally, the code will ask the user to specify additional parameters once it has been launched.

  1. Photometric system: Enter G, J or 2 (depending on the photometric system for which the data are available, see above for details).
  2. Isochrone grid spacing, age_step: In the current version, the user can choose between two spacings in the isochrone grid (0.1 or 0.2).
  3. Isochrone grid spacing, z_step: In the current version, use only value 0.005 (can be changed by the user, but the set of isochrones should be changed accordingly, if necessary).
  4. Number of reddening iterations, Nredd: The number of reddening values that should be studied by the code. Choose 1 if you want to use only the initial estimate value E(B-V)_ini. For 0, a predetermined set of ten values is used. Otherwise, use any odd number larger than 1.
  5. Reddening range, redAdj: The relative range for reddening iterations. For example, if redAdj=0.3 is given and Nredd > 1, then the code will start at the value 0.7*E(B-V)_ini and end at 1.3*E(B-V)_ini. The value of the initial estimate is always included (if Nredd>=1). Values between 0 and 1 are acceptable, excluding the limits.
  6. Maximum number of iterations, Niter: Determines the maximum number of iterations while searching for metallicity for a given reddening value. Necessary because the code may get stuck between two possible solutions. A large number is not advised, because the number of iterations is typically smaller than five. We recommend using Niter=6 for the currently included grids.

Output

The code provides all of the useful information on the output. If debugTest is set to True, the code will return additional information about the individual cluster members (values used in calculations, usually only required for debugging).

First of all, the solutions for different assumed reddening values will generally differ. For this, we include the results for all of the reddening values in a log-file in the finished folder. Included are the user input parameters, resulting cluster parameters (together with the quality-of-fit value, that should be minimised in the code) and the run-time for each of the individual clusters.

Secondly, the figures (CMD and LTN diagram) for the three best solutions are plotted saved in the finished folder. These figures should be consulted before interpreting the results.

Sub-procedures

Details regarding the sub-procedures can be found in our paper. We would like to point out here that most of the sub-procedure can be easily exchanged. For example, the sub-procedures metalcode_calib_absmg and metalcode_calib_clrex are used to apply steps that deredden the colour and correct the brightness for the extinction. The transformation coefficients can be exchanged by the user (if required).

Furthermore, we use pre-prepared set of polynomial relation in order to calculate Teff and BC for a given combination of the colour and metallicity values. These calibrations were based on the isochrones themselves (and may slightly differ from the empirical, observation-based, relations found in the literature). If the user wishes to replace the relations, sets of polynomial coefficients have to be replaced in metalcode_calib_tempe. Because of how our code works, the user should prepare the coefficients for the different Z values, starting from Z=0.001 up to Z=0.040 (in the current version), with delta_Z=0.001.

Finally, the isochrone fitting technique is based only on a simple least-square method. In order to use any other technique, one should alter the file "metalcode_calc_lstsqr". The only requirement is that LstSqr() from this sub-procedure returns a quality-of-fit value that needs to be minimised.

We would like to point out that the currently included fitting technique was prepared only the for testing purposes, and it may not be sophisticated enough to produce results for proper scientific analysis. We urge the user to replace this sub-procedure if possible. In the future updates, we will replace this sub-procedure ourselves so that the code can be used for a scientific work right out of the box.

Examples

We include a list of ten examples of open clusters that we analysed in our work. The observational data for the individual clusters were taken from the following sources:

All data files were manually pre-filtered in order to remove binary sequences, white dwarfs, and other possible outliers. A clear sequence of stars (main sequence + giants) is required with the currently introduced isochrone fitting sub-procedure.

Acknowledgements

The work was supported from Operational Programme Research, Development and Education - ,,Project Internal Grant Agency of Masaryk University'' (No. CZ.02.2.69/0.0/0.0/19_073/0016943).

This work makes use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement.

This work makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation.

This research has made use of the WEBDA database (https://webda.physics.muni.cz), operated at the Department of Theoretical Physics and Astrophysics of the Masaryk University.

The isochrones were taken from http://stev.oapd.inaf.it/cgi-bin/cmd_3.5 (using default settings, except for the choice of the passbands).

An energy estimator for eyeriss-like DNN hardware accelerator

Energy-Estimator-for-Eyeriss-like-Architecture- An energy estimator for eyeriss-like DNN hardware accelerator This is an energy estimator for eyeriss-

HEXIN BAO 2 Mar 26, 2022
[CVPR 2021] VirTex: Learning Visual Representations from Textual Annotations

VirTex: Learning Visual Representations from Textual Annotations Karan Desai and Justin Johnson University of Michigan CVPR 2021 arxiv.org/abs/2006.06

Karan Desai 533 Dec 24, 2022
ProjectOxford-ClientSDK - This repo has moved :house: Visit our website for the latest SDKs & Samples

This project has moved 🏠 We heard your feedback! This repo has been deprecated and each project has moved to a new home in a repo scoped by API and p

Microsoft 970 Nov 28, 2022
Nvdiffrast - Modular Primitives for High-Performance Differentiable Rendering

Nvdiffrast – Modular Primitives for High-Performance Differentiable Rendering Modular Primitives for High-Performance Differentiable Rendering Samuli

NVIDIA Research Projects 675 Jan 06, 2023
DAN: Unfolding the Alternating Optimization for Blind Super Resolution

DAN-Basd-on-Openmmlab DAN: Unfolding the Alternating Optimization for Blind Super Resolution We reproduce DAN via mmediting based on open-sourced code

AlexZou 72 Dec 13, 2022
A modified version of DeepMind's Alphafold2 to divide CPU part (MSA and template searching) and GPU part (prediction model)

ParallelFold Author: Bozitao Zhong This is a modified version of DeepMind's Alphafold2 to divide CPU part (MSA and template searching) and GPU part (p

Bozitao Zhong 77 Dec 22, 2022
Anagram Generator in Python

Anagrams Generator This is a program for computing multiword anagrams. It makes no effort to come up with sentences that make sense; it only finds ana

Day Fundora 5 Nov 17, 2022
Creating Artificial Life with Reinforcement Learning

Although Evolutionary Algorithms have shown to result in interesting behavior, they focus on learning across generations whereas behavior could also be learned during ones lifetime.

Maarten Grootendorst 49 Dec 21, 2022
General-purpose program synthesiser

DeepSynth General-purpose program synthesiser. This is the repository for the code of the paper "Scaling Neural Program Synthesis with Distribution-ba

Nathanaël Fijalkow 24 Oct 23, 2022
Real-time Neural Representation Fusion for Robust Volumetric Mapping

NeuralBlox: Real-Time Neural Representation Fusion for Robust Volumetric Mapping Paper | Supplementary This repository contains the implementation of

ETHZ ASL 106 Dec 24, 2022
nextPARS, a novel Illumina-based implementation of in-vitro parallel probing of RNA structures.

nextPARS, a novel Illumina-based implementation of in-vitro parallel probing of RNA structures. Here you will find the scripts necessary to produce th

Jesse Willis 0 Jan 20, 2022
UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus

UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus General info This is

71 Oct 25, 2022
code associated with ACL 2021 DExperts paper

DExperts Hi! This repository contains code for the paper DExperts: Decoding-Time Controlled Text Generation with Experts and Anti-Experts to appear at

Alisa Liu 68 Dec 15, 2022
Transfer Learning Remote Sensing

Transfer_Learning_Remote_Sensing Simulation R codes for data generation and visualizations are in the folder simulation. Experiment: California Housin

2 Jun 21, 2022
[ICCV 2021] Group-aware Contrastive Regression for Action Quality Assessment

CoRe Created by Xumin Yu*, Yongming Rao*, Wenliang Zhao, Jiwen Lu, Jie Zhou This is the PyTorch implementation for ICCV paper Group-aware Contrastive

Xumin Yu 31 Dec 24, 2022
Pytorch implementation of MaskGIT: Masked Generative Image Transformer

Pytorch implementation of MaskGIT: Masked Generative Image Transformer

Dominic Rampas 247 Dec 16, 2022
Code used for the results in the paper "ClassMix: Segmentation-Based Data Augmentation for Semi-Supervised Learning"

Code used for the results in the paper "ClassMix: Segmentation-Based Data Augmentation for Semi-Supervised Learning" Getting started Prerequisites CUD

70 Dec 02, 2022
The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

Sun Yi 201 Nov 21, 2022
Code for ICCV2021 paper SPEC: Seeing People in the Wild with an Estimated Camera

SPEC: Seeing People in the Wild with an Estimated Camera [ICCV 2021] SPEC: Seeing People in the Wild with an Estimated Camera, Muhammed Kocabas, Chun-

Muhammed Kocabas 187 Dec 26, 2022
A PyTorch implementation for PyramidNets (Deep Pyramidal Residual Networks)

A PyTorch implementation for PyramidNets (Deep Pyramidal Residual Networks) This repository contains a PyTorch implementation for the paper: Deep Pyra

Greg Dongyoon Han 262 Jan 03, 2023