Automatic tool focused on deriving metallicities of open clusters

Overview

metalcode

Automatic tool focused on deriving metallicities of open clusters. Based on the method described in Pöhnl & Paunzen (2010, https://ui.adsabs.harvard.edu/abs/2010A%26A...514A..81P/abstract).

Description

This is the version 1.0 of the automated version of the procedure devised by Pöhnl & Paunzen (2010). The tool is focused on calculating metallicities Z (and logAge) of open clusters, assuming that accurate values of reddening and distance are provided (determined by independent methods). Before the code is applied, data for the cluster members (photometric brightness and colour) need to be prepared together with a file containing the list of clusters together with additional parameters. Examples of the data files are provided with the code. The code is applicable to Johnson (V,B-V), Gaia (G,BP-RP) and 2MASS (J,J-Ks) photometric systems.

The run-time of the code will depend on the total number of clusters in the included list, on the number of cluster members, and on the user input parameters. For example, if user inputs:

  • age_step=0.2
  • z_step=0.005
  • Nredd=5
  • Niter=6

code will return results within 1-2 min for a typical open cluster. However, it can run for longer in the case of a larger cluster (for the included example of NGC 6791, the code returned results after 20 min). Furthermore, the specific run-time is also hardware-dependent (the code was tested on AMD Ryzen 3 PRO 4450U).

See Piecka & Paunzen (submitted) for a full description of the methods applied in the code.

Requirements

In order to run the code, user must have installed Python 3 with numpy. The other libraries (matplotlib, time, os) are not required for the proper functionality of the code, but provide additional information useful information (e.g. figures).

The code was tested on the following operating systems:

  • Windows 10
  • Ubuntu 20.04 LTS
  • Fedora 34

Installation

Only Python 3 and the mentioned libraries need to be installed. Otherwise, no additional installation is needed.

Usage

To launch the tool, run the script metalcode_v1_0.py. For successful application of the tool, a cluster list and the associated data files need to be included prior to running the script.

Input

We describe several data files in this section of the documentation. As column separation, we use spaces between values. Furthermore, isochrone grids are required for the code to run. The included grids (logAge=6.6..10.0, Z=0.005..0.040, delta_logAge=0.1, delta_Z=0.005) are for the three photometric systems described below. The isochrones should be included in the main folder, the other files (described below) should be located in the clusters folder.

On the input (before the code is executed), the user must provide a file containing the list of clusters together with additional parameters (_complete.txt in clusters folder). The structure of this file adheres to the following format (the first line of the file is skipped on loading):

CLUSTER_NAME   GAL_LATITUDE_deg   PARALLAX_mas   DISTANCE_pc   E(B-V)_mag
...            ...                ...            ...           ...

The cluster name should be written as one word (spaces should be replaced by underscores). Galactic latitude and parallax are not necessary - they should be used only if reddening is taken from extinction maps (in that case, expcor parameter in the code should be changed to 1). If the reddening value is not known and there is no good guess, set the value to be any negative value. The code will then use a pre-determined set of reddening values (in magnitudes: 0.010, 0.040, 0.080, 0.125, 0.250, 0.500, 0.750, 1.000, 1.500, 2.000).

Secondly, a set of files containing cluster data is required. The cluster data should be provided for the specific photometric system, and the file name should coincide with CLUSTER_NAME_X, where the suffix X should be replaced by the following:

  • G for Gaia (G, BP-RP)
  • 2 for 2MASS (J, J-Ks)
  • J for Johnson (V, B-V)

The first line of the data file is skipped. The columns should follow the given format (in mag):

PHOTOMETRIC_BRIGHTNESS   PHOTOMETRIC_COLOUR
...                      ...

We strongly suggest that the users pre-analyse the colour-magnitude diagrams. Obvious binary sequences, white dwarfs, and possible other clear outliers should be removed in advance. This is necessary in the current version of the code due to the limitations of the included isochrone fitting sub-procedure.

Finally, the code will ask the user to specify additional parameters once it has been launched.

  1. Photometric system: Enter G, J or 2 (depending on the photometric system for which the data are available, see above for details).
  2. Isochrone grid spacing, age_step: In the current version, the user can choose between two spacings in the isochrone grid (0.1 or 0.2).
  3. Isochrone grid spacing, z_step: In the current version, use only value 0.005 (can be changed by the user, but the set of isochrones should be changed accordingly, if necessary).
  4. Number of reddening iterations, Nredd: The number of reddening values that should be studied by the code. Choose 1 if you want to use only the initial estimate value E(B-V)_ini. For 0, a predetermined set of ten values is used. Otherwise, use any odd number larger than 1.
  5. Reddening range, redAdj: The relative range for reddening iterations. For example, if redAdj=0.3 is given and Nredd > 1, then the code will start at the value 0.7*E(B-V)_ini and end at 1.3*E(B-V)_ini. The value of the initial estimate is always included (if Nredd>=1). Values between 0 and 1 are acceptable, excluding the limits.
  6. Maximum number of iterations, Niter: Determines the maximum number of iterations while searching for metallicity for a given reddening value. Necessary because the code may get stuck between two possible solutions. A large number is not advised, because the number of iterations is typically smaller than five. We recommend using Niter=6 for the currently included grids.

Output

The code provides all of the useful information on the output. If debugTest is set to True, the code will return additional information about the individual cluster members (values used in calculations, usually only required for debugging).

First of all, the solutions for different assumed reddening values will generally differ. For this, we include the results for all of the reddening values in a log-file in the finished folder. Included are the user input parameters, resulting cluster parameters (together with the quality-of-fit value, that should be minimised in the code) and the run-time for each of the individual clusters.

Secondly, the figures (CMD and LTN diagram) for the three best solutions are plotted saved in the finished folder. These figures should be consulted before interpreting the results.

Sub-procedures

Details regarding the sub-procedures can be found in our paper. We would like to point out here that most of the sub-procedure can be easily exchanged. For example, the sub-procedures metalcode_calib_absmg and metalcode_calib_clrex are used to apply steps that deredden the colour and correct the brightness for the extinction. The transformation coefficients can be exchanged by the user (if required).

Furthermore, we use pre-prepared set of polynomial relation in order to calculate Teff and BC for a given combination of the colour and metallicity values. These calibrations were based on the isochrones themselves (and may slightly differ from the empirical, observation-based, relations found in the literature). If the user wishes to replace the relations, sets of polynomial coefficients have to be replaced in metalcode_calib_tempe. Because of how our code works, the user should prepare the coefficients for the different Z values, starting from Z=0.001 up to Z=0.040 (in the current version), with delta_Z=0.001.

Finally, the isochrone fitting technique is based only on a simple least-square method. In order to use any other technique, one should alter the file "metalcode_calc_lstsqr". The only requirement is that LstSqr() from this sub-procedure returns a quality-of-fit value that needs to be minimised.

We would like to point out that the currently included fitting technique was prepared only the for testing purposes, and it may not be sophisticated enough to produce results for proper scientific analysis. We urge the user to replace this sub-procedure if possible. In the future updates, we will replace this sub-procedure ourselves so that the code can be used for a scientific work right out of the box.

Examples

We include a list of ten examples of open clusters that we analysed in our work. The observational data for the individual clusters were taken from the following sources:

All data files were manually pre-filtered in order to remove binary sequences, white dwarfs, and other possible outliers. A clear sequence of stars (main sequence + giants) is required with the currently introduced isochrone fitting sub-procedure.

Acknowledgements

The work was supported from Operational Programme Research, Development and Education - ,,Project Internal Grant Agency of Masaryk University'' (No. CZ.02.2.69/0.0/0.0/19_073/0016943).

This work makes use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement.

This work makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation.

This research has made use of the WEBDA database (https://webda.physics.muni.cz), operated at the Department of Theoretical Physics and Astrophysics of the Masaryk University.

The isochrones were taken from http://stev.oapd.inaf.it/cgi-bin/cmd_3.5 (using default settings, except for the choice of the passbands).

The CLRS Algorithmic Reasoning Benchmark

Learning representations of algorithms is an emerging area of machine learning, seeking to bridge concepts from neural networks with classical algorithms.

DeepMind 251 Jan 05, 2023
Densely Connected Search Space for More Flexible Neural Architecture Search (CVPR2020)

DenseNAS The code of the CVPR2020 paper Densely Connected Search Space for More Flexible Neural Architecture Search. Neural architecture search (NAS)

Jamin Fong 291 Nov 18, 2022
This repo includes the CUB-GHA (Gaze-based Human Attention) dataset and code of the paper "Human Attention in Fine-grained Classification".

HA-in-Fine-Grained-Classification This repo includes the CUB-GHA (Gaze-based Human Attention) dataset and code of the paper "Human Attention in Fine-g

16 Oct 29, 2022
A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model.

Semantic Meshes A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model. Paper If you find this framework usefu

Florian 40 Dec 09, 2022
Multiband spectro-radiometric satellite image analysis with K-means cluster algorithm

Multi-band Spectro Radiomertric Image Analysis with K-means Cluster Algorithm Overview Multi-band Spectro Radiomertric images are images comprising of

Chibueze Henry 6 Mar 16, 2022
Evolution Strategies in PyTorch

Evolution Strategies This is a PyTorch implementation of Evolution Strategies. Requirements Python 3.5, PyTorch = 0.2.0, numpy, gym, universe, cv2 Wh

Andrew Gambardella 333 Nov 14, 2022
Code for "Contextual Non-Local Alignment over Full-Scale Representation for Text-Based Person Search"

Contextual Non-Local Alignment over Full-Scale Representation for Text-Based Person Search This is an implementation for our paper Contextual Non-Loca

Tencent YouTu Research 50 Dec 03, 2022
The implementation of "Bootstrapping Semantic Segmentation with Regional Contrast".

ReCo - Regional Contrast This repository contains the source code of ReCo and baselines from the paper, Bootstrapping Semantic Segmentation with Regio

Shikun Liu 128 Dec 30, 2022
Code and data for the EMNLP 2021 paper "Just Say No: Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts". Coming soon!

ToxiChat Code and data for the EMNLP 2021 paper "Just Say No: Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts". Install depen

Ashutosh Baheti 11 Jan 01, 2023
Automatic labeling, conversion of different data set formats, sample size statistics, model cascade

Simple Gadget Collection for Object Detection Tasks Automatic image annotation Conversion between different annotation formats Obtain statistical info

llt 4 Aug 24, 2022
Julia and Matlab codes to simulated all problems in El-Hachem, McCue and Simpson (2021)

Substrate_Mediated_Invasion Julia and Matlab codes to simulated all problems in El-Hachem, McCue and Simpson (2021) 2DSolver.jl reproduces the simulat

Matthew Simpson 0 Nov 09, 2021
This repository is an implementation of paper : Improving the Training of Graph Neural Networks with Consistency Regularization

CRGNN Paper : Improving the Training of Graph Neural Networks with Consistency Regularization Environments Implementing environment: GeForce RTX™ 3090

THUDM 28 Dec 09, 2022
Equivariant Imaging: Learning Beyond the Range Space

Equivariant Imaging: Learning Beyond the Range Space Equivariant Imaging: Learning Beyond the Range Space Dongdong Chen, Julián Tachella, Mike E. Davi

Dongdong Chen 46 Jan 01, 2023
Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax

Clockwork VAEs in JAX/Flax Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax, ported

Julius Kunze 26 Oct 05, 2022
Unofficial implementation of Pix2SEQ

Unofficial-Pix2seq: A Language Modeling Framework for Object Detection Unofficial implementation of Pix2SEQ. Please use this code with causion. Many i

159 Dec 12, 2022
Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer

Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer Paper on arXiv Public PyTorch implementation of two-stage peer-reg

NNAISENSE 38 Oct 14, 2022
Multiview 3D object detection on MultiviewC dataset through moft3d.

Multiview Orthographic Feature Transformation for 3D Object Detection Multiview 3D object detection on MultiviewC dataset through moft3d. Introduction

Jiahao Ma 20 Dec 21, 2022
Open source person re-identification library in python

Open-ReID Open-ReID is a lightweight library of person re-identification for research purpose. It aims to provide a uniform interface for different da

Tong Xiao 1.3k Jan 01, 2023
BlueFog Tutorials

BlueFog Tutorials Welcome to the BlueFog tutorials! In this repository, we've put together a collection of awesome Jupyter notebooks. These notebooks

4 Oct 27, 2021
A library for researching neural networks compression and acceleration methods.

A library for researching neural networks compression and acceleration methods.

Intel Labs 100 Dec 29, 2022