training script for space time memory network

Overview

Trainig Script for Space Time Memory Network

This codebase implemented training code for Space Time Memory Network with some cyclic features.

sample results

Requirement

python package

  • torch
  • python-opencv
  • pillow
  • yaml
  • imgaug
  • yacs
  • progress
  • nvidia-dali (optional)

GPU support

  • GPU Memory >= 12GB
  • CUDA >= 10.0

Data

See the doc DATASET.md for more details on data organization of our prepared dataset.

Release

We provide pre-trained model with different backbone in our codebase, results are validated on DAVIS17-val with gradient correction.

model backbone data backend J F J & F link FPS
STM-Cycle Resnet18 DALI 65.3 70.8 68.1 Google Drive 14.8
STM-Cycle Resnet50 PIL 70.5 76.3 73.4 Google Drive 9.3

Runing

Appending the root folder to the search path of python interpreter

export PYTHONPATH=${PYTHONPATH}:./

To train the STM network, run following command.

python3 train.py --cfg config.yaml OPTION_KEY OPTION_VAL

To test the STM network, run following command

python3 test.py --cfg config.yaml initial ${PATH_TO_MODEL} OPTION_KEY OPTION_VAL

The test results will be saved as indexed png file at ${ROOT}/${output_dir}/${valset}.

To run a segmentation demo, run following command

python3 demo/demo.py --cfg demo/demo.yaml OPTION_KEY OPTION_VAL

The segmentation results will be saved at ${output_dir}.

Acknowledgement

This codebase borrows the code and structure from official STM repository

Reference

The codebase is built based on following works

@InProceedings{Oh_2019_ICCV,
author = {Oh, Seoung Wug and Lee, Joon-Young and Xu, Ning and Kim, Seon Joo},
title = {Video Object Segmentation Using Space-Time Memory Networks},
booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
month = {October},
year = {2019}
}

@InProceedings{Li_2020_NeurIPS,
author = {Li, Yuxi and Xu, Ning and Peng Jinlong and John See and Lin Weiyao},
title = {Delving into the Cyclic Mechanism in Semi-supervised Video Object Segmentation},
booktitle = {Neural Information Processing System (NeurIPS)},
year = {2020}
}
Owner
Yuxi Li
Yuxi Li
CNNs for Sentence Classification in PyTorch

Introduction This is the implementation of Kim's Convolutional Neural Networks for Sentence Classification paper in PyTorch. Kim's implementation of t

Shawn Ng 956 Dec 19, 2022
Crawl & visualize ICLR papers and reviews

Crawl and Visualize ICLR 2022 OpenReview Data Descriptions This Jupyter Notebook contains the data crawled from ICLR 2022 OpenReview webpages and thei

Federico Berto 75 Dec 05, 2022
Simple reimplemetation experiments about FcaNet

FcaNet-CIFAR An implementation of the paper FcaNet: Frequency Channel Attention Networks on CIFAR10/CIFAR100 dataset. how to run Code: python Cifar.py

76 Feb 04, 2021
Revisiting Temporal Alignment for Video Restoration

Revisiting Temporal Alignment for Video Restoration [arXiv] Kun Zhou, Wenbo Li, Liying Lu, Xiaoguang Han, Jiangbo Lu We provide our results at Google

52 Dec 25, 2022
ONNX-PackNet-SfM: Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX

Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX

Ibai Gorordo 14 Dec 09, 2022
TLoL (Python Module) - League of Legends Deep Learning AI (Research and Development)

TLoL-py - League of Legends Deep Learning Library TLoL-py is the Python component of the TLoL League of Legends deep learning library. It provides a s

7 Nov 29, 2022
This is an official implementation for "Video Swin Transformers".

Video Swin Transformer By Ze Liu*, Jia Ning*, Yue Cao, Yixuan Wei, Zheng Zhang, Stephen Lin and Han Hu. This repo is the official implementation of "V

Swin Transformer 981 Jan 03, 2023
This is an early in-development version of training CLIP models with hivemind.

A transformer that does not hog your GPU memory This is an early in-development codebase: if you want a stable and documented hivemind codebase, look

<a href=[email protected]"> 4 Nov 06, 2022
Code for "Continuous-Time Meta-Learning with Forward Mode Differentiation" (ICLR 2022)

Continuous-Time Meta-Learning with Forward Mode Differentiation ICLR 2022 (Spotlight) - Installation - Example - Citation This repository contains the

Tristan Deleu 25 Oct 20, 2022
Open-source implementation of Google Vizier for hyper parameters tuning

Advisor Introduction Advisor is the hyper parameters tuning system for black box optimization. It is the open-source implementation of Google Vizier w

tobe 1.5k Jan 04, 2023
Implementation of Basic Machine Learning Algorithms on small datasets using Scikit Learn.

Basic Machine Learning Algorithms All the basic Machine Learning Algorithms are implemented in Python using libraries Acknowledgements Machine Learnin

Piyal Banik 47 Oct 16, 2022
McGill Physics Hackathon 2021: Reaction-Diffusion Models for the Generation of Biological Patterns

DiffuseAnimals: Reaction-Diffusion Models for the Generation of Biological Patterns Introduction Reaction-diffusion equations can be utilized in order

Austin Szuminsky 2 Mar 07, 2022
Basics of 2D and 3D Human Pose Estimation.

Human Pose Estimation 101 If you want a slightly more rigorous tutorial and understand the basics of Human Pose Estimation and how the field has evolv

Sudharshan Chandra Babu 293 Dec 14, 2022
This repository contains the exercises and its solution contained in the book "An Introduction to Statistical Learning" in python.

An-Introduction-to-Statistical-Learning This repository contains the exercises and its solution contained in the book An Introduction to Statistical L

2.1k Jan 02, 2023
QKeras: a quantization deep learning library for Tensorflow Keras

QKeras github.com/google/qkeras QKeras 0.8 highlights: Automatic quantization using QKeras; Stochastic behavior (including stochastic rouding) is disa

Google 437 Jan 03, 2023
Pytorch implemenation of Stochastic Multi-Label Image-to-image Translation (SMIT)

SMIT: Stochastic Multi-Label Image-to-image Translation This repository provides a PyTorch implementation of SMIT. SMIT can stochastically translate a

Biomedical Computer Vision Group @ Uniandes 37 Mar 01, 2022
Cross-Document Coreference Resolution

Cross-Document Coreference Resolution This repository contains code and models for end-to-end cross-document coreference resolution, as decribed in ou

Arie Cattan 29 Nov 28, 2022
HairCLIP: Design Your Hair by Text and Reference Image

Overview This repository hosts the official PyTorch implementation of the paper: "HairCLIP: Design Your Hair by Text and Reference Image". Our single

322 Jan 06, 2023
Fake News Detection Using Machine Learning Methods

Fake-News-Detection-Using-Machine-Learning-Methods Fake news is always a real and dangerous issue. However, with the presence and abundance of various

Achraf Safsafi 1 Jan 11, 2022
Algorithmic trading using machine learning.

Algorithmic Trading This machine learning algorithm was built using Python 3 and scikit-learn with a Decision Tree Classifier. The program gathers sto

Sourav Biswas 101 Nov 10, 2022