Image-to-image translation with conditional adversarial nets

Overview

pix2pix

Project | Arxiv | PyTorch

Torch implementation for learning a mapping from input images to output images, for example:

Image-to-Image Translation with Conditional Adversarial Networks
Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A. Efros
CVPR, 2017.

On some tasks, decent results can be obtained fairly quickly and on small datasets. For example, to learn to generate facades (example shown above), we trained on just 400 images for about 2 hours (on a single Pascal Titan X GPU). However, for harder problems it may be important to train on far larger datasets, and for many hours or even days.

Note: Please check out our PyTorch implementation for pix2pix and CycleGAN. The PyTorch version is under active development and can produce results comparable to or better than this Torch version.

Setup

Prerequisites

  • Linux or OSX
  • NVIDIA GPU + CUDA CuDNN (CPU mode and CUDA without CuDNN may work with minimal modification, but untested)

Getting Started

luarocks install nngraph
luarocks install https://raw.githubusercontent.com/szym/display/master/display-scm-0.rockspec
  • Clone this repo:
git clone [email protected]:phillipi/pix2pix.git
cd pix2pix
bash ./datasets/download_dataset.sh facades
  • Train the model
DATA_ROOT=./datasets/facades name=facades_generation which_direction=BtoA th train.lua
  • (CPU only) The same training command without using a GPU or CUDNN. Setting the environment variables gpu=0 cudnn=0 forces CPU only
DATA_ROOT=./datasets/facades name=facades_generation which_direction=BtoA gpu=0 cudnn=0 batchSize=10 save_epoch_freq=5 th train.lua
  • (Optionally) start the display server to view results as the model trains. ( See Display UI for more details):
th -ldisplay.start 8000 0.0.0.0
  • Finally, test the model:
DATA_ROOT=./datasets/facades name=facades_generation which_direction=BtoA phase=val th test.lua

The test results will be saved to an html file here: ./results/facades_generation/latest_net_G_val/index.html.

Train

DATA_ROOT=/path/to/data/ name=expt_name which_direction=AtoB th train.lua

Switch AtoB to BtoA to train translation in opposite direction.

Models are saved to ./checkpoints/expt_name (can be changed by passing checkpoint_dir=your_dir in train.lua).

See opt in train.lua for additional training options.

Test

DATA_ROOT=/path/to/data/ name=expt_name which_direction=AtoB phase=val th test.lua

This will run the model named expt_name in direction AtoB on all images in /path/to/data/val.

Result images, and a webpage to view them, are saved to ./results/expt_name (can be changed by passing results_dir=your_dir in test.lua).

See opt in test.lua for additional testing options.

Datasets

Download the datasets using the following script. Some of the datasets are collected by other researchers. Please cite their papers if you use the data.

bash ./datasets/download_dataset.sh dataset_name

Models

Download the pre-trained models with the following script. You need to rename the model (e.g., facades_label2image to /checkpoints/facades/latest_net_G.t7) after the download has finished.

bash ./models/download_model.sh model_name
  • facades_label2image (label -> facade): trained on the CMP Facades dataset.
  • cityscapes_label2image (label -> street scene): trained on the Cityscapes dataset.
  • cityscapes_image2label (street scene -> label): trained on the Cityscapes dataset.
  • edges2shoes (edge -> photo): trained on UT Zappos50K dataset.
  • edges2handbags (edge -> photo): trained on Amazon handbags images.
  • day2night (daytime scene -> nighttime scene): trained on around 100 webcams.

Setup Training and Test data

Generating Pairs

We provide a python script to generate training data in the form of pairs of images {A,B}, where A and B are two different depictions of the same underlying scene. For example, these might be pairs {label map, photo} or {bw image, color image}. Then we can learn to translate A to B or B to A:

Create folder /path/to/data with subfolders A and B. A and B should each have their own subfolders train, val, test, etc. In /path/to/data/A/train, put training images in style A. In /path/to/data/B/train, put the corresponding images in style B. Repeat same for other data splits (val, test, etc).

Corresponding images in a pair {A,B} must be the same size and have the same filename, e.g., /path/to/data/A/train/1.jpg is considered to correspond to /path/to/data/B/train/1.jpg.

Once the data is formatted this way, call:

python scripts/combine_A_and_B.py --fold_A /path/to/data/A --fold_B /path/to/data/B --fold_AB /path/to/data

This will combine each pair of images (A,B) into a single image file, ready for training.

Notes on Colorization

No need to run combine_A_and_B.py for colorization. Instead, you need to prepare some natural images and set preprocess=colorization in the script. The program will automatically convert each RGB image into Lab color space, and create L -> ab image pair during the training. Also set input_nc=1 and output_nc=2.

Extracting Edges

We provide python and Matlab scripts to extract coarse edges from photos. Run scripts/edges/batch_hed.py to compute HED edges. Run scripts/edges/PostprocessHED.m to simplify edges with additional post-processing steps. Check the code documentation for more details.

Evaluating Labels2Photos on Cityscapes

We provide scripts for running the evaluation of the Labels2Photos task on the Cityscapes validation set. We assume that you have installed caffe (and pycaffe) in your system. If not, see the official website for installation instructions. Once caffe is successfully installed, download the pre-trained FCN-8s semantic segmentation model (512MB) by running

bash ./scripts/eval_cityscapes/download_fcn8s.sh

Then make sure ./scripts/eval_cityscapes/ is in your system's python path. If not, run the following command to add it

export PYTHONPATH=${PYTHONPATH}:./scripts/eval_cityscapes/

Now you can run the following command to evaluate your predictions:

python ./scripts/eval_cityscapes/evaluate.py --cityscapes_dir /path/to/original/cityscapes/dataset/ --result_dir /path/to/your/predictions/ --output_dir /path/to/output/directory/

Images stored under --result_dir should contain your model predictions on the Cityscapes validation split, and have the original Cityscapes naming convention (e.g., frankfurt_000001_038418_leftImg8bit.png). The script will output a text file under --output_dir containing the metric.

Further notes: Our pre-trained FCN model is not supposed to work on Cityscapes in the original resolution (1024x2048) as it was trained on 256x256 images that are then upsampled to 1024x2048 during training. The purpose of the resizing during training was to 1) keep the label maps in the original high resolution untouched and 2) avoid the need to change the standard FCN training code and the architecture for Cityscapes. During test time, you need to synthesize 256x256 results. Our test code will automatically upsample your results to 1024x2048 before feeding them to the pre-trained FCN model. The output is at 1024x2048 resolution and will be compared to 1024x2048 ground truth labels. You do not need to resize the ground truth labels. The best way to verify whether everything is correct is to reproduce the numbers for real images in the paper first. To achieve it, you need to resize the original/real Cityscapes images (not labels) to 256x256 and feed them to the evaluation code.

Display UI

Optionally, for displaying images during training and test, use the display package.

  • Install it with: luarocks install https://raw.githubusercontent.com/szym/display/master/display-scm-0.rockspec
  • Then start the server with: th -ldisplay.start
  • Open this URL in your browser: http://localhost:8000

By default, the server listens on localhost. Pass 0.0.0.0 to allow external connections on any interface:

th -ldisplay.start 8000 0.0.0.0

Then open http://(hostname):(port)/ in your browser to load the remote desktop.

L1 error is plotted to the display by default. Set the environment variable display_plot to a comma-separated list of values errL1, errG and errD to visualize the L1, generator, and discriminator error respectively. For example, to plot only the generator and discriminator errors to the display instead of the default L1 error, set display_plot="errG,errD".

Citation

If you use this code for your research, please cite our paper Image-to-Image Translation Using Conditional Adversarial Networks:

@article{pix2pix2017,
  title={Image-to-Image Translation with Conditional Adversarial Networks},
  author={Isola, Phillip and Zhu, Jun-Yan and Zhou, Tinghui and Efros, Alexei A},
  journal={CVPR},
  year={2017}
}

Cat Paper Collection

If you love cats, and love reading cool graphics, vision, and learning papers, please check out the Cat Paper Collection:
[Github] [Webpage]

Acknowledgments

Code borrows heavily from DCGAN. The data loader is modified from DCGAN and Context-Encoder.

UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus

UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus General info This is

71 Oct 25, 2022
[ICCV'21] PlaneTR: Structure-Guided Transformers for 3D Plane Recovery

PlaneTR: Structure-Guided Transformers for 3D Plane Recovery This is the official implementation of our ICCV 2021 paper News There maybe some bugs in

73 Nov 30, 2022
K-FACE Analysis Project on Pytorch

Installation Setup with Conda # create a new environment conda create --name insightKface python=3.7 # or over conda activate insightKface #install t

Jung Jun Uk 7 Nov 10, 2022
Pseudo lidar - (CVPR 2019) Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving

Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving This paper has been accpeted by Conference o

Yan Wang 881 Dec 27, 2022
The Balloon Learning Environment - flying stratospheric balloons with deep reinforcement learning.

Balloon Learning Environment Docs The Balloon Learning Environment (BLE) is a simulator for stratospheric balloons. It is designed as a benchmark envi

Google 87 Dec 25, 2022
PyTorch implementation of Federated Learning with Non-IID Data, and federated learning algorithms, including FedAvg, FedProx.

Federated Learning with Non-IID Data This is an implementation of the following paper: Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, Vik

Youngjoon Lee 48 Dec 29, 2022
Official PyTorch Implementation of GAN-Supervised Dense Visual Alignment

GAN-Supervised Dense Visual Alignment — Official PyTorch Implementation Paper | Project Page | Video This repo contains training, evaluation and visua

944 Jan 07, 2023
Point Cloud Denoising input segmentation output raw point-cloud valid/clear fog rain de-noised Abstract Lidar sensors are frequently used in environme

Point Cloud Denoising input segmentation output raw point-cloud valid/clear fog rain de-noised Abstract Lidar sensors are frequently used in environme

75 Nov 24, 2022
It's final year project of Diploma Engineering. This project is based on Computer Vision.

Face-Recognition-Based-Attendance-System It's final year project of Diploma Engineering. This project is based on Computer Vision. Brief idea about ou

Neel 10 Nov 02, 2022
An Easy-to-use, Modular and Prolongable package of deep-learning based Named Entity Recognition Models.

DeepNER An Easy-to-use, Modular and Prolongable package of deep-learning based Named Entity Recognition Models. This repository contains complex Deep

Derrick 9 May 30, 2022
Deep Learning Emotion decoding using EEG data from Autism individuals

Deep Learning Emotion decoding using EEG data from Autism individuals This repository includes the python and matlab codes using for processing EEG 2D

Juan Manuel Mayor Torres 12 Dec 08, 2022
Changing the Mind of Transformers for Topically-Controllable Language Generation

We will first introduce the how to run the IPython notebook demo by downloading our pretrained models. Then, we will introduce how to run our training and evaluation code.

IESL 20 Dec 06, 2022
🏆 The 1st Place Submission to AICity Challenge 2021 Natural Language-Based Vehicle Retrieval Track (Alibaba-UTS submission)

AI City 2021: Connecting Language and Vision for Natural Language-Based Vehicle Retrieval 🏆 The 1st Place Submission to AICity Challenge 2021 Natural

82 Dec 29, 2022
Repository for "Improving evidential deep learning via multi-task learning," published in AAAI2022

Improving evidential deep learning via multi task learning It is a repository of AAAI2022 paper, “Improving evidential deep learning via multi-task le

deargen 11 Nov 19, 2022
ICLR21 Tent: Fully Test-Time Adaptation by Entropy Minimization

⛺️ Tent: Fully Test-Time Adaptation by Entropy Minimization This is the official project repository for Tent: Fully-Test Time Adaptation by Entropy Mi

Dequan Wang 204 Dec 25, 2022
Top #1 Submission code for the first https://alphamev.ai MEV competition with best AUC (0.9893) and MSE (0.0982).

alphamev-winning-submission Top #1 Submission code for the first alphamev MEV competition with best AUC (0.9893) and MSE (0.0982). The code won't run

70 Oct 29, 2022
This is the official repository of XVFI (eXtreme Video Frame Interpolation)

XVFI This is the official repository of XVFI (eXtreme Video Frame Interpolation), https://arxiv.org/abs/2103.16206 Last Update: 20210607 We provide th

Jihyong Oh 195 Dec 29, 2022
Complementary Patch for Weakly Supervised Semantic Segmentation, ICCV21 (poster)

CPN (ICCV2021) This is an implementation of Complementary Patch for Weakly Supervised Semantic Segmentation, which is accepted by ICCV2021 poster. Thi

Ferenas 20 Dec 12, 2022
Py-FEAT: Python Facial Expression Analysis Toolbox

Py-FEAT is a suite for facial expressions (FEX) research written in Python. This package includes tools to detect faces, extract emotional facial expressions (e.g., happiness, sadness, anger), facial

Computational Social Affective Neuroscience Laboratory 147 Jan 06, 2023
Dense Deep Unfolding Network with 3D-CNN Prior for Snapshot Compressive Imaging, ICCV2021 [PyTorch Code]

Dense Deep Unfolding Network with 3D-CNN Prior for Snapshot Compressive Imaging, ICCV2021 [PyTorch Code]

Jian Zhang 20 Oct 24, 2022