Official implementation of NeurIPS 2021 paper "Contextual Similarity Aggregation with Self-attention for Visual Re-ranking"

Related tags

Deep LearningCSA
Overview

CSA: Contextual Similarity Aggregation with Self-attention for Visual Re-ranking

PyTorch training code for CSA (Contextual Similarity Aggregation). We propose a visual re-ranking method by contextual similarity aggregation with transformer, obtaining 80.3 mAP on ROxf with Medium evaluation protocols. Inference in 50 lines of PyTorch.

CSA

What it is. Unlike traditional visual reranking techniques, CSA uses the similarity between the image and the anchor image as a representation of the image, which is defined as affinity feature. It consists of a contrastive loss that forces the relevant images to have larger cosine similarity and vice versa, an MSE loss that preserves the information of the original affinity features, and a Transformer encoder architecture. Given ranking list returned by the first-round retrieval, CSA first choose the top-L images in ranking list as the anchor images and calculates the affinity features of the top-K candidates,then dynamically refine the affinity features of different candiates in parallel. Due to this parallel nature, CSA is very fast and efficient.

About the code. CSA is very simple to implement and experiment with, and we provide a Notebook showing how to do inference with CSA in only a few lines of PyTorch code. Training code follows this idea - it is not a library, but simply a train.py importing model and criterion definitions with standard training loops.

mAP performance of the proposed model

We provide results of baseline CSA and CSA trained with data augmentation. mAP is computed with Medium and Hard evaluation protocols. model will come soon. CSA

Requirements

  • Python 3
  • PyTorch tested on 1.7.1+, torchvision 0.8.2+
  • numpy
  • matplotlib

Usage - Visual Re-ranking

There are no extra compiled components in CSA and package dependencies are minimal, so the code is very simple to use. We provide instructions how to install dependencies via conda. Install PyTorch 1.7.1+ and torchvision 0.8.2+:

conda install -c pytorch pytorch torchvision

Data preparation

Before going further, please check out Filip Radenovic's great repository on image retrieval. We use his code and model to extract features for training images. If you use this code in your research, please also cite their work! link to license

Download and extract rSfm120k train and val images with annotations from http://cmp.felk.cvut.cz/cnnimageretrieval/.

Download ROxf and RPar datastes with annotations. Prepare features for testing and training images with Filip Radenovic's model and code. We expect the directory structure to be the following:

path/to/data/
  ├─ annotations # annotation pkl files
  │   ├─ retrieval-SfM-120k.pkl
  │   ├─ roxford5k
  |   |   ├─ gnd_roxford5k.mat
  |   |   └─ gnd_roxford5k.pkl
  |   └─ rparis6k
  |   |   ├─ gnd_rparis6k.mat
  |   |   └─ gnd_rparis6k.pkl
  ├─ test # test features		
  |   ├─ r1m
  |   |   ├─ gl18-tl-resnet101-gem-w.pkl
  |   |   └─ rSfM120k-tl-resnet101-gem-w.pkl
  │   ├─ roxford5k
  |   |   ├─ gl18-tl-resnet101-gem-w.pkl
  |   |   └─ rSfM120k-tl-resnet101-gem-w.pkl
  |   └─ rparis6k
  |   |   ├─ gl18-tl-resnet101-gem-w.pkl
  |   |   └─ rSfM120k-tl-resnet101-gem-w.pkl
  └─ train # train features
      ├─ gl18-tl-resnet50-gem-w.pkl
      ├─ gl18-tl-resnet101-gem-w.pkl
      └─ gl18-tl-resnet152-gem-w.pkl

Training

To train baseline CSA on a single node with 4 gpus for 100 epochs run:

sh experiment_rSfm120k.sh

A single epoch takes 10 minutes, so 100 epoch training takes around 17 hours on a single machine with 4 2080Ti cards. To ease reproduction of our results we provide results and training logs for 200 epoch schedule (34 hours on a single machine).

We train CSA with SGD setting learning rate in the transformer to 0.1. The transformer is trained with dropout of 0.1, and the whole model is trained with grad clip of 1.0. To train CSA with data augmentation a single node with 4 gpus for 100 epochs run:

sh experiment_augrSfm120k.sh

Evaluation

To evaluate CSA on Roxf and Rparis with a single GPU run:

sh test.sh

and get results as below

>> Test Dataset: roxford5k *** fist-stage >>
>> gl18-tl-resnet101-gem-w: mAP Medium: 67.3, Hard: 44.24
>> gl18-tl-resnet101-gem-w: [email protected][1, 5, 10] Medium: [95.71 90.29 84.57], Hard: [87.14 69.71 59.86]

>> Test Dataset: roxford5k *** rerank-topk1024 >>
>> gl18-tl-resnet101-gem-w: mAP Medium: 77.92, Hard: 58.43
>> gl18-tl-resnet101-gem-w: [email protected][1, 5, 10] Medium: [94.29 93.14 89.71], Hard: [87.14 83.43 73.14]

>> Test Dataset: rparis6k *** fist-stage >>
>> gl18-tl-resnet101-gem-w: mAP Medium: 80.57, Hard: 61.46
>> gl18-tl-resnet101-gem-w: [email protected][1, 5, 10] Medium: [100.    98.    96.86], Hard: [97.14 93.14 90.57]

>> Test Dataset: rparis6k *** query-rerank-1024 >>
>> gl18-tl-resnet101-gem-w: mAP Medium: 87.2, Hard: 74.41
>> gl18-tl-resnet101-gem-w: [email protected][1, 5, 10] Medium: [100.    97.14  96.57], Hard: [95.71 92.86 90.14]

Qualitative examples

Selected qualitative examples of our re-ranking method. Top-10 results are shown in the figure. The figure is divided into four groups which consist of a result of initial retrieval and a result of our re-ranking method. The first two groups are the successful cases and the other two groups arethe failed cases. The images on the left with orange bounding boxes are the queries. The image with green denotes the true positives and the red bounding boxes are false positives. CSA

License

CSA is released under the MIT license. Please see the LICENSE file for more information.

Owner
Hui Wu
Department of Electronic Engineering and Information Science University of Science and Technology of China
Hui Wu
Sequence Modeling with Structured State Spaces

Structured State Spaces for Sequence Modeling This repository provides implementations and experiments for the following papers. S4 Efficiently Modeli

HazyResearch 896 Jan 01, 2023
Densely Connected Convolutional Networks, In CVPR 2017 (Best Paper Award).

Densely Connected Convolutional Networks (DenseNets) This repository contains the code for DenseNet introduced in the following paper Densely Connecte

Zhuang Liu 4.5k Jan 03, 2023
A library for optimization on Riemannian manifolds

TensorFlow RiemOpt A library for manifold-constrained optimization in TensorFlow. Installation To install the latest development version from GitHub:

Oleg Smirnov 83 Dec 27, 2022
PyTorch implementation of Weak-shot Fine-grained Classification via Similarity Transfer

SimTrans-Weak-Shot-Classification This repository contains the official PyTorch implementation of the following paper: Weak-shot Fine-grained Classifi

BCMI 60 Dec 02, 2022
Code for "Primitive Representation Learning for Scene Text Recognition" (CVPR 2021)

Primitive Representation Learning Network (PREN) This repository contains the code for our paper accepted by CVPR 2021 Primitive Representation Learni

Ruijie Yan 76 Jan 02, 2023
A pytorch &keras implementation and demo of Fastformer.

Fastformer Notes from the authors Pytorch/Keras implementation of Fastformer. The keras version only includes the core fastformer attention part. The

153 Dec 28, 2022
PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement.

DECOR-GAN PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement, Zhiqin Chen, Vladimir G. Kim, Matthew Fish

Zhiqin Chen 72 Dec 31, 2022
wgan, wgan2(improved, gp), infogan, and dcgan implementation in lasagne, keras, pytorch

Generative Adversarial Notebooks Collection of my Generative Adversarial Network implementations Most codes are for python3, most notebooks works on C

tjwei 1.5k Dec 16, 2022
A Pytorch implement of paper "Anomaly detection in dynamic graphs via transformer" (TADDY).

TADDY: Anomaly detection in dynamic graphs via transformer This repo covers an reference implementation for the paper "Anomaly detection in dynamic gr

Yue Tan 21 Nov 24, 2022
Automated image registration. Registrationimation was too much of a mouthful.

alignimation Automated image registration. Registrationimation was too much of a mouthful. This repo contains the code used for my blog post Alignimat

Ethan Rosenthal 9 Oct 13, 2022
TransVTSpotter: End-to-end Video Text Spotter with Transformer

TransVTSpotter: End-to-end Video Text Spotter with Transformer Introduction A Multilingual, Open World Video Text Dataset and End-to-end Video Text Sp

weijiawu 66 Dec 26, 2022
Implementation of Kronecker Attention in Pytorch

Kronecker Attention Pytorch Implementation of Kronecker Attention in Pytorch. Results look less than stellar, but if someone found some context where

Phil Wang 16 May 06, 2022
EMNLP'2021: SimCSE: Simple Contrastive Learning of Sentence Embeddings

SimCSE: Simple Contrastive Learning of Sentence Embeddings This repository contains the code and pre-trained models for our paper SimCSE: Simple Contr

Princeton Natural Language Processing 2.5k Dec 29, 2022
Discriminative Region Suppression for Weakly-Supervised Semantic Segmentation

Discriminative Region Suppression for Weakly-Supervised Semantic Segmentation (AAAI 2021) Official pytorch implementation of our paper: Discriminative

Beom 74 Dec 27, 2022
Transfer SemanticKITTI labeles into other dataset/sensor formats.

LiDAR-Transfer Transfer SemanticKITTI labeles into other dataset/sensor formats. Content Convert datasets (NUSCENES, FORD, NCLT) to KITTI format Minim

Photogrammetry & Robotics Bonn 64 Nov 21, 2022
Distributed Asynchronous Hyperparameter Optimization in Python

Hyperopt: Distributed Hyperparameter Optimization Hyperopt is a Python library for serial and parallel optimization over awkward search spaces, which

6.5k Jan 01, 2023
Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System

Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System Authors: Yixuan Su, Lei Shu, Elman Mansimov, Arshit Gupta, Deng Cai, Yi-An Lai

Amazon Web Services - Labs 123 Dec 23, 2022
Understanding the Generalization Benefit of Model Invariance from a Data Perspective

Understanding the Generalization Benefit of Model Invariance from a Data Perspective This is the code for our NeurIPS2021 paper "Understanding the Gen

1 Jan 15, 2022
Meta-learning for NLP

Self-Supervised Meta-Learning for Few-Shot Natural Language Classification Tasks Code for training the meta-learning models and fine-tuning on downstr

IESL 43 Nov 08, 2022
CPPE - 5 (Medical Personal Protective Equipment) is a new challenging object detection dataset

CPPE - 5 CPPE - 5 (Medical Personal Protective Equipment) is a new challenging dataset with the goal to allow the study of subordinate categorization

Rishit Dagli 53 Dec 17, 2022