Official implementation of NeurIPS 2021 paper "Contextual Similarity Aggregation with Self-attention for Visual Re-ranking"

Related tags

Deep LearningCSA
Overview

CSA: Contextual Similarity Aggregation with Self-attention for Visual Re-ranking

PyTorch training code for CSA (Contextual Similarity Aggregation). We propose a visual re-ranking method by contextual similarity aggregation with transformer, obtaining 80.3 mAP on ROxf with Medium evaluation protocols. Inference in 50 lines of PyTorch.

CSA

What it is. Unlike traditional visual reranking techniques, CSA uses the similarity between the image and the anchor image as a representation of the image, which is defined as affinity feature. It consists of a contrastive loss that forces the relevant images to have larger cosine similarity and vice versa, an MSE loss that preserves the information of the original affinity features, and a Transformer encoder architecture. Given ranking list returned by the first-round retrieval, CSA first choose the top-L images in ranking list as the anchor images and calculates the affinity features of the top-K candidates,then dynamically refine the affinity features of different candiates in parallel. Due to this parallel nature, CSA is very fast and efficient.

About the code. CSA is very simple to implement and experiment with, and we provide a Notebook showing how to do inference with CSA in only a few lines of PyTorch code. Training code follows this idea - it is not a library, but simply a train.py importing model and criterion definitions with standard training loops.

mAP performance of the proposed model

We provide results of baseline CSA and CSA trained with data augmentation. mAP is computed with Medium and Hard evaluation protocols. model will come soon. CSA

Requirements

  • Python 3
  • PyTorch tested on 1.7.1+, torchvision 0.8.2+
  • numpy
  • matplotlib

Usage - Visual Re-ranking

There are no extra compiled components in CSA and package dependencies are minimal, so the code is very simple to use. We provide instructions how to install dependencies via conda. Install PyTorch 1.7.1+ and torchvision 0.8.2+:

conda install -c pytorch pytorch torchvision

Data preparation

Before going further, please check out Filip Radenovic's great repository on image retrieval. We use his code and model to extract features for training images. If you use this code in your research, please also cite their work! link to license

Download and extract rSfm120k train and val images with annotations from http://cmp.felk.cvut.cz/cnnimageretrieval/.

Download ROxf and RPar datastes with annotations. Prepare features for testing and training images with Filip Radenovic's model and code. We expect the directory structure to be the following:

path/to/data/
  ├─ annotations # annotation pkl files
  │   ├─ retrieval-SfM-120k.pkl
  │   ├─ roxford5k
  |   |   ├─ gnd_roxford5k.mat
  |   |   └─ gnd_roxford5k.pkl
  |   └─ rparis6k
  |   |   ├─ gnd_rparis6k.mat
  |   |   └─ gnd_rparis6k.pkl
  ├─ test # test features		
  |   ├─ r1m
  |   |   ├─ gl18-tl-resnet101-gem-w.pkl
  |   |   └─ rSfM120k-tl-resnet101-gem-w.pkl
  │   ├─ roxford5k
  |   |   ├─ gl18-tl-resnet101-gem-w.pkl
  |   |   └─ rSfM120k-tl-resnet101-gem-w.pkl
  |   └─ rparis6k
  |   |   ├─ gl18-tl-resnet101-gem-w.pkl
  |   |   └─ rSfM120k-tl-resnet101-gem-w.pkl
  └─ train # train features
      ├─ gl18-tl-resnet50-gem-w.pkl
      ├─ gl18-tl-resnet101-gem-w.pkl
      └─ gl18-tl-resnet152-gem-w.pkl

Training

To train baseline CSA on a single node with 4 gpus for 100 epochs run:

sh experiment_rSfm120k.sh

A single epoch takes 10 minutes, so 100 epoch training takes around 17 hours on a single machine with 4 2080Ti cards. To ease reproduction of our results we provide results and training logs for 200 epoch schedule (34 hours on a single machine).

We train CSA with SGD setting learning rate in the transformer to 0.1. The transformer is trained with dropout of 0.1, and the whole model is trained with grad clip of 1.0. To train CSA with data augmentation a single node with 4 gpus for 100 epochs run:

sh experiment_augrSfm120k.sh

Evaluation

To evaluate CSA on Roxf and Rparis with a single GPU run:

sh test.sh

and get results as below

>> Test Dataset: roxford5k *** fist-stage >>
>> gl18-tl-resnet101-gem-w: mAP Medium: 67.3, Hard: 44.24
>> gl18-tl-resnet101-gem-w: [email protected][1, 5, 10] Medium: [95.71 90.29 84.57], Hard: [87.14 69.71 59.86]

>> Test Dataset: roxford5k *** rerank-topk1024 >>
>> gl18-tl-resnet101-gem-w: mAP Medium: 77.92, Hard: 58.43
>> gl18-tl-resnet101-gem-w: [email protected][1, 5, 10] Medium: [94.29 93.14 89.71], Hard: [87.14 83.43 73.14]

>> Test Dataset: rparis6k *** fist-stage >>
>> gl18-tl-resnet101-gem-w: mAP Medium: 80.57, Hard: 61.46
>> gl18-tl-resnet101-gem-w: [email protected][1, 5, 10] Medium: [100.    98.    96.86], Hard: [97.14 93.14 90.57]

>> Test Dataset: rparis6k *** query-rerank-1024 >>
>> gl18-tl-resnet101-gem-w: mAP Medium: 87.2, Hard: 74.41
>> gl18-tl-resnet101-gem-w: [email protected][1, 5, 10] Medium: [100.    97.14  96.57], Hard: [95.71 92.86 90.14]

Qualitative examples

Selected qualitative examples of our re-ranking method. Top-10 results are shown in the figure. The figure is divided into four groups which consist of a result of initial retrieval and a result of our re-ranking method. The first two groups are the successful cases and the other two groups arethe failed cases. The images on the left with orange bounding boxes are the queries. The image with green denotes the true positives and the red bounding boxes are false positives. CSA

License

CSA is released under the MIT license. Please see the LICENSE file for more information.

Owner
Hui Wu
Department of Electronic Engineering and Information Science University of Science and Technology of China
Hui Wu
Label-Free Model Evaluation with Semi-Structured Dataset Representations

Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch

8 Oct 06, 2022
A Python package for performing pore network modeling of porous media

Overview of OpenPNM OpenPNM is a comprehensive framework for performing pore network simulations of porous materials. More Information For more detail

PMEAL 336 Dec 30, 2022
Python periodic table module

elemenpy Hello! elements.py is a small Python periodic table module that is used for calling certain information about an element. Installation Instal

Eric Cheng 2 Dec 27, 2021
Official Tensorflow implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Detection"

M-LSD: Towards Light-weight and Real-time Line Segment Detection Official Tensorflow implementation of "M-LSD: Towards Light-weight and Real-time Line

NAVER/LINE Vision 357 Jan 04, 2023
EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network

EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network This repo contains the official Pytorch implementaion code and conf

Hu Zhang 175 Jan 07, 2023
git《Commonsense Knowledge Base Completion with Structural and Semantic Context》(AAAI 2020) GitHub: [fig1]

Commonsense Knowledge Base Completion with Structural and Semantic Context Code for the paper Commonsense Knowledge Base Completion with Structural an

AI2 96 Nov 05, 2022
Code for the USENIX 2017 paper: kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels Blazing fast x86-64 VM kernel fuzzing framework with performant VM reloads for Linux, MacOS an

Chair for Sys­tems Se­cu­ri­ty 541 Nov 27, 2022
Official implementation of the PICASO: Permutation-Invariant Cascaded Attentional Set Operator

PICASO Official PyTorch implemetation for the paper PICASO:Permutation-Invariant Cascaded Attentive Set Operator. Requirements Python 3 torch = 1.0 n

Samira Zare 0 Dec 23, 2021
Official codebase for "B-Pref: Benchmarking Preference-BasedReinforcement Learning" contains scripts to reproduce experiments.

B-Pref Official codebase for B-Pref: Benchmarking Preference-BasedReinforcement Learning contains scripts to reproduce experiments. Install conda env

48 Dec 20, 2022
SAAVN - Sound Adversarial Audio-Visual Navigation,ICLR2022 (In PyTorch)

SAAVN SAAVN Code release for paper "Sound Adversarial Audio-Visual Navigation,IC

YinfengYu 10 Aug 30, 2022
Pixray is an image generation system

Pixray is an image generation system

pixray 883 Jan 07, 2023
RRL: Resnet as representation for Reinforcement Learning

Resnet as representation for Reinforcement Learning (RRL) is a simple yet effective approach for training behaviors directly from visual inputs. We demonstrate that features learned by standard image

Meta Research 21 Dec 07, 2022
A new GCN model for Point Cloud Analyse

Pytorch Implementation of PointNet and PointNet++ This repo is implementation for VA-GCN in pytorch. Classification (ModelNet10/40) Data Preparation D

12 Feb 02, 2022
Transformer model implemented with Pytorch

transformer-pytorch Transformer model implemented with Pytorch Attention is all you need-[Paper] Architecture Self-Attention self_attention.py class

Mingu Kang 12 Sep 03, 2022
ChainerRL is a deep reinforcement learning library built on top of Chainer.

ChainerRL and PFRL ChainerRL (this repository) is a deep reinforcement learning library that implements various state-of-the-art deep reinforcement al

Chainer 1.1k Jan 01, 2023
A library of extension and helper modules for Python's data analysis and machine learning libraries.

Mlxtend (machine learning extensions) is a Python library of useful tools for the day-to-day data science tasks. Sebastian Raschka 2014-2020 Links Doc

Sebastian Raschka 4.2k Jan 02, 2023
Code for "OctField: Hierarchical Implicit Functions for 3D Modeling (NeurIPS 2021)"

OctField(Jittor): Hierarchical Implicit Functions for 3D Modeling Introduction This repository is code release for OctField: Hierarchical Implicit Fun

55 Dec 08, 2022
MPViT:Multi-Path Vision Transformer for Dense Prediction

MPViT : Multi-Path Vision Transformer for Dense Prediction This repository inlcu

Youngwan Lee 272 Dec 20, 2022
Fast, differentiable sorting and ranking in PyTorch

Torchsort Fast, differentiable sorting and ranking in PyTorch. Pure PyTorch implementation of Fast Differentiable Sorting and Ranking (Blondel et al.)

Teddy Koker 655 Jan 04, 2023
Implementation of UNET architecture for Image Segmentation.

Semantic Segmentation using UNET This is the implementation of UNET on Carvana Image Masking Kaggle Challenge About the Dataset This dataset contains

Anushka agarwal 4 Dec 21, 2021