Official implementation of NeurIPS 2021 paper "Contextual Similarity Aggregation with Self-attention for Visual Re-ranking"

Related tags

Deep LearningCSA
Overview

CSA: Contextual Similarity Aggregation with Self-attention for Visual Re-ranking

PyTorch training code for CSA (Contextual Similarity Aggregation). We propose a visual re-ranking method by contextual similarity aggregation with transformer, obtaining 80.3 mAP on ROxf with Medium evaluation protocols. Inference in 50 lines of PyTorch.

CSA

What it is. Unlike traditional visual reranking techniques, CSA uses the similarity between the image and the anchor image as a representation of the image, which is defined as affinity feature. It consists of a contrastive loss that forces the relevant images to have larger cosine similarity and vice versa, an MSE loss that preserves the information of the original affinity features, and a Transformer encoder architecture. Given ranking list returned by the first-round retrieval, CSA first choose the top-L images in ranking list as the anchor images and calculates the affinity features of the top-K candidates,then dynamically refine the affinity features of different candiates in parallel. Due to this parallel nature, CSA is very fast and efficient.

About the code. CSA is very simple to implement and experiment with, and we provide a Notebook showing how to do inference with CSA in only a few lines of PyTorch code. Training code follows this idea - it is not a library, but simply a train.py importing model and criterion definitions with standard training loops.

mAP performance of the proposed model

We provide results of baseline CSA and CSA trained with data augmentation. mAP is computed with Medium and Hard evaluation protocols. model will come soon. CSA

Requirements

  • Python 3
  • PyTorch tested on 1.7.1+, torchvision 0.8.2+
  • numpy
  • matplotlib

Usage - Visual Re-ranking

There are no extra compiled components in CSA and package dependencies are minimal, so the code is very simple to use. We provide instructions how to install dependencies via conda. Install PyTorch 1.7.1+ and torchvision 0.8.2+:

conda install -c pytorch pytorch torchvision

Data preparation

Before going further, please check out Filip Radenovic's great repository on image retrieval. We use his code and model to extract features for training images. If you use this code in your research, please also cite their work! link to license

Download and extract rSfm120k train and val images with annotations from http://cmp.felk.cvut.cz/cnnimageretrieval/.

Download ROxf and RPar datastes with annotations. Prepare features for testing and training images with Filip Radenovic's model and code. We expect the directory structure to be the following:

path/to/data/
  ├─ annotations # annotation pkl files
  │   ├─ retrieval-SfM-120k.pkl
  │   ├─ roxford5k
  |   |   ├─ gnd_roxford5k.mat
  |   |   └─ gnd_roxford5k.pkl
  |   └─ rparis6k
  |   |   ├─ gnd_rparis6k.mat
  |   |   └─ gnd_rparis6k.pkl
  ├─ test # test features		
  |   ├─ r1m
  |   |   ├─ gl18-tl-resnet101-gem-w.pkl
  |   |   └─ rSfM120k-tl-resnet101-gem-w.pkl
  │   ├─ roxford5k
  |   |   ├─ gl18-tl-resnet101-gem-w.pkl
  |   |   └─ rSfM120k-tl-resnet101-gem-w.pkl
  |   └─ rparis6k
  |   |   ├─ gl18-tl-resnet101-gem-w.pkl
  |   |   └─ rSfM120k-tl-resnet101-gem-w.pkl
  └─ train # train features
      ├─ gl18-tl-resnet50-gem-w.pkl
      ├─ gl18-tl-resnet101-gem-w.pkl
      └─ gl18-tl-resnet152-gem-w.pkl

Training

To train baseline CSA on a single node with 4 gpus for 100 epochs run:

sh experiment_rSfm120k.sh

A single epoch takes 10 minutes, so 100 epoch training takes around 17 hours on a single machine with 4 2080Ti cards. To ease reproduction of our results we provide results and training logs for 200 epoch schedule (34 hours on a single machine).

We train CSA with SGD setting learning rate in the transformer to 0.1. The transformer is trained with dropout of 0.1, and the whole model is trained with grad clip of 1.0. To train CSA with data augmentation a single node with 4 gpus for 100 epochs run:

sh experiment_augrSfm120k.sh

Evaluation

To evaluate CSA on Roxf and Rparis with a single GPU run:

sh test.sh

and get results as below

>> Test Dataset: roxford5k *** fist-stage >>
>> gl18-tl-resnet101-gem-w: mAP Medium: 67.3, Hard: 44.24
>> gl18-tl-resnet101-gem-w: [email protected][1, 5, 10] Medium: [95.71 90.29 84.57], Hard: [87.14 69.71 59.86]

>> Test Dataset: roxford5k *** rerank-topk1024 >>
>> gl18-tl-resnet101-gem-w: mAP Medium: 77.92, Hard: 58.43
>> gl18-tl-resnet101-gem-w: [email protected][1, 5, 10] Medium: [94.29 93.14 89.71], Hard: [87.14 83.43 73.14]

>> Test Dataset: rparis6k *** fist-stage >>
>> gl18-tl-resnet101-gem-w: mAP Medium: 80.57, Hard: 61.46
>> gl18-tl-resnet101-gem-w: [email protected][1, 5, 10] Medium: [100.    98.    96.86], Hard: [97.14 93.14 90.57]

>> Test Dataset: rparis6k *** query-rerank-1024 >>
>> gl18-tl-resnet101-gem-w: mAP Medium: 87.2, Hard: 74.41
>> gl18-tl-resnet101-gem-w: [email protected][1, 5, 10] Medium: [100.    97.14  96.57], Hard: [95.71 92.86 90.14]

Qualitative examples

Selected qualitative examples of our re-ranking method. Top-10 results are shown in the figure. The figure is divided into four groups which consist of a result of initial retrieval and a result of our re-ranking method. The first two groups are the successful cases and the other two groups arethe failed cases. The images on the left with orange bounding boxes are the queries. The image with green denotes the true positives and the red bounding boxes are false positives. CSA

License

CSA is released under the MIT license. Please see the LICENSE file for more information.

Owner
Hui Wu
Department of Electronic Engineering and Information Science University of Science and Technology of China
Hui Wu
ANEA: Distant Supervision for Low-Resource Named Entity Recognition

ANEA: Distant Supervision for Low-Resource Named Entity Recognition ANEA is a tool to automatically annotate named entities in unlabeled text based on

Saarland University Spoken Language Systems Group 15 Mar 30, 2022
Multiwavelets-based operator model

Multiwavelet model for Operator maps Gaurav Gupta, Xiongye Xiao, and Paul Bogdan Multiwavelet-based Operator Learning for Differential Equations In Ne

Gaurav 33 Dec 04, 2022
FusionNet: A deep fully residual convolutional neural network for image segmentation in connectomics

FusionNet_Pytorch FusionNet: A deep fully residual convolutional neural network for image segmentation in connectomics Requirements Pytorch 0.1.11 Pyt

Choi Gunho 102 Dec 13, 2022
Randomized Correspondence Algorithm for Structural Image Editing

===================================== README: Inpainting based PatchMatch ===================================== @Author: Younesse ANDAM @Conta

Younesse 116 Dec 24, 2022
Image Matching Evaluation

Image Matching Evaluation (IME) IME provides to test any feature matching algorithm on datasets containing ground-truth homographies. Also, one can re

32 Nov 17, 2022
Consistency Regularization for Adversarial Robustness

Consistency Regularization for Adversarial Robustness Official PyTorch implementation of Consistency Regularization for Adversarial Robustness by Jiho

40 Dec 17, 2022
一套完整的微博舆情分析流程代码,包括微博爬虫、LDA主题分析和情感分析。

已经将项目的关键文件上传,包含微博爬虫、LDA主题分析和情感分析三个部分。 1.微博爬虫 实现微博评论爬取和微博用户信息爬取,一天大概十万条。 2.LDA主题分析 实现文档主题抽取,包括数据清洗及分词、主题数的确定(主题一致性和困惑度)和最优主题模型的选择(暴力搜索)。 3.情感分析 实现评论文本的

182 Jan 02, 2023
N-gram models- Unsmoothed, Laplace, Deleted Interpolation

N-gram models- Unsmoothed, Laplace, Deleted Interpolation

Ravika Nagpal 1 Jan 04, 2022
General-purpose program synthesiser

DeepSynth General-purpose program synthesiser. This is the repository for the code of the paper "Scaling Neural Program Synthesis with Distribution-ba

Nathanaël Fijalkow 24 Oct 23, 2022
Trading and Backtesting environment for training reinforcement learning agent or simple rule base algo.

TradingGym TradingGym is a toolkit for training and backtesting the reinforcement learning algorithms. This was inspired by OpenAI Gym and imitated th

Yvictor 1.1k Jan 02, 2023
Supplementary code for the AISTATS 2021 paper "Matern Gaussian Processes on Graphs".

Matern Gaussian Processes on Graphs This repo provides an extension for gpflow with Matérn kernels, inducing variables and trainable models implemente

41 Dec 17, 2022
Fast, modular reference implementation and easy training of Semantic Segmentation algorithms in PyTorch.

TorchSeg This project aims at providing a fast, modular reference implementation for semantic segmentation models using PyTorch. Highlights Modular De

ycszen 1.4k Jan 02, 2023
Python script that analyses the given datasets and comes up with the best polynomial regression representation with the smallest polynomial degree possible

Python script that analyses the given datasets and comes up with the best polynomial regression representation with the smallest polynomial degree possible, to be the most reliable with the least com

Nikolas B Virionis 2 Aug 01, 2022
PyTorch Implementation of "Non-Autoregressive Neural Machine Translation"

Non-Autoregressive Transformer Code release for Non-Autoregressive Neural Machine Translation by Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K.

Salesforce 261 Nov 12, 2022
LIAO Shuiying 6 Dec 01, 2022
Classification Modeling: Probability of Default

Credit Risk Modeling in Python Introduction: If you've ever applied for a credit card or loan, you know that financial firms process your information

Aktham Momani 2 Nov 07, 2022
Pretrained Cost Model for Distributed Constraint Optimization Problems

Pretrained Cost Model for Distributed Constraint Optimization Problems Requirements PyTorch 1.9.0 PyTorch Geometric 1.7.1 Directory structure baseline

2 Aug 28, 2022
This repository contains code accompanying the paper "An End-to-End Chinese Text Normalization Model based on Rule-Guided Flat-Lattice Transformer"

FlatTN This repository contains code accompanying the paper "An End-to-End Chinese Text Normalization Model based on Rule-Guided Flat-Lattice Transfor

THUHCSI 74 Nov 28, 2022
Fine-tuning StyleGAN2 for Cartoon Face Generation

Cartoon-StyleGAN 🙃 : Fine-tuning StyleGAN2 for Cartoon Face Generation Abstract Recent studies have shown remarkable success in the unsupervised imag

Jihye Back 520 Jan 04, 2023
A package for "Procedural Content Generation via Reinforcement Learning" OpenAI Gym interface.

Readme: Illuminating Diverse Neural Cellular Automata for Level Generation This is the codebase used to generate the results presented in the paper av

Sam Earle 27 Jan 05, 2023