Codes for NeurIPS 2021 paper "On the Equivalence between Neural Network and Support Vector Machine".

Overview

On the Equivalence between Neural Network and Support Vector Machine

Codes for NeurIPS 2021 paper "On the Equivalence between Neural Network and Support Vector Machine".

Cite our paper

Yilan Chen, Wei Huang, Lam M. Nguyen, Tsui-Wei Weng, "On the Equivalence between Neural Network and Support Vector Machine", NeurIPS 2021.

@inproceedings{chen2021equiv,
  title={On the equivalence between neural network and support vector machine},
  author={Yilan Chen and Wei Huang and Lam M. Nguyen and Tsui-Wei Weng},
  booktitle={Advances in Neural Information Processing Systems},
  year={2021}
}

Overview

In this paper, we prove the equivalence between neural network (NN) and support vector machine (SVM), specifically, the infinitely wide NN trained by soft margin loss and the standard soft margin SVM with NTK trained by subgradient descent. Our main theoretical results include establishing the equivalence between NN and a broad family of L2 regularized kernel machines (KMs) with finite-width bounds, which cannot be handled by prior work, and showing that every finite-width NN trained by such regularized loss functions is approximately a KM.

Furthermore, we demonstrate our theory can enable three practical applications, including

  • non-vacuous generalization bound of NN via the corresponding KM;
  • non-trivial robustness certificate for the infinite-width NN (while existing robustness verification methods (e.g. IBP, Fast-Lin, CROWN) would provide vacuous bounds);
  • intrinsically more robust infinite-width NNs than those from previous kernel regression.

See our paper and slides for details.

Equivalence between infinite-width NNs and a family of KMs

Code overview

  • train_sgd.py: train the NN and SVM with NTK with stochastic subgradient descent. Plot the results to verify the equivalence.

  • generalization.py: compute non-vacuous generalization bound of NN via the corresponding KM.

  • regression.py: kernel ridge regression with NTK.

  • robust_svm.py:

    • test(): evaluate the robustness of NN using IBP or SVM with our method in the paper.
    • test_regressions(): evaluate the robustness of kernel ridge regression models using our method.
    • bound_ntk():calculate the lower and upper bound for NTK of two-layer fully-connected NN.
  • ibp.py: functions to calculate IBP bounds. Specified for NTK parameterization.

  • models/model.py: codes for constructing fully-connected neural networks with NTK parameterization.

  • config/:

    • svm_sgd.yaml: configurations and hyper-parameters to train NN and SVM.
    • svm_gene.yaml: configurations and hyper-parameters to calculate generalization bound.

Required environments:

This code is tested on the below environments:

python==3.8.8
torch==1.8.1
neural-tangents==0.3.6

Other required packages can be installed using Conda as follows,

conda create -n equiv-nn-svm python=3.8
conda activate equiv-nn-svm
conda install numpy tqdm matplotlib seaborn pyyaml

For the installation of PyTorch, please reference the instructions from https://pytorch.org/get-started/locally/. For the installation and usage of neural-tangents, please reference the instructions at https://github.com/google/neural-tangents.

Experiments

Train NN and SVM to verify the equivalence

python train_sgd.py

Example of the SGD results

SGD results

Example of the GD results

GD results

Computing non-vacuous generalization bound of NN via the corresponding KM

python generalization.py

Example of the generalization bound results

Generalization bound results

Robustness verification of NN

Add your paths to your NN models in the code and separate by the width. Specify the width of the models you want to verify. Then run the test() function in robust_svm.py.

python -c "import robust_svm; robust_svm.test('nn')"

Robustness verification of SVM

Add your paths to your SVM models in the code. Then run the test() function in robust_svm.py.

python -c "import robust_svm; robust_svm.test('svm')"

robustness verification results

Train kernel ridge regression with NTK models

python regression.py

Robustness verification of kernel ridge regression models

Run test_regressions() function in robust_svm.py.

python -c "import robust_svm; robust_svm.test_regressions()"

robustness verification results

Owner
Leslie
Leslie
Geometric Vector Perceptron --- a rotation-equivariant GNN for learning from biomolecular structure

Geometric Vector Perceptron Code to accompany Learning from Protein Structure with Geometric Vector Perceptrons by B Jing, S Eismann, P Suriana, RJL T

Dror Lab 85 Dec 29, 2022
Nonuniform-to-Uniform Quantization: Towards Accurate Quantization via Generalized Straight-Through Estimation. In CVPR 2022.

Nonuniform-to-Uniform Quantization This repository contains the training code of N2UQ introduced in our CVPR 2022 paper: "Nonuniform-to-Uniform Quanti

Zechun Liu 60 Dec 28, 2022
Consistency Regularization for Adversarial Robustness

Consistency Regularization for Adversarial Robustness Official PyTorch implementation of Consistency Regularization for Adversarial Robustness by Jiho

40 Dec 17, 2022
ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information

ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information This repository contains code, model, dataset for ChineseBERT at ACL2021. Ch

413 Dec 01, 2022
Demonstrates iterative FGSM on Apple's NeuralHash model.

apple-neuralhash-attack Demonstrates iterative FGSM on Apple's NeuralHash model. TL;DR: It is possible to apply noise to CSAM images and make them loo

Lim Swee Kiat 11 Jun 23, 2022
Python package to add text to images, textures and different backgrounds

nider Python package for text images generation and watermarking Free software: MIT license Documentation: https://nider.readthedocs.io. nider is an a

Vladyslav Ovchynnykov 131 Dec 30, 2022
Pytorch code for semantic segmentation using ERFNet

ERFNet (PyTorch version) This code is a toolbox that uses PyTorch for training and evaluating the ERFNet architecture for semantic segmentation. For t

Edu 394 Jan 01, 2023
Semantic Segmentation with Pytorch-Lightning

This is a simple demo for performing semantic segmentation on the Kitti dataset using Pytorch-Lightning and optimizing the neural network by monitoring and comparing runs with Weights & Biases.

Boris Dayma 58 Nov 18, 2022
Exposure Time Calculator (ETC) and radial velocity precision estimator for the Near InfraRed Planet Searcher (NIRPS) spectrograph

NIRPS-ETC Exposure Time Calculator (ETC) and radial velocity precision estimator for the Near InfraRed Planet Searcher (NIRPS) spectrograph February 2

Nolan Grieves 2 Sep 15, 2022
STRIVE: Scene Text Replacement In Videos

STRIVE: Scene Text Replacement In Videos Dataset Types: RoboText SynthText RealWorld videos RoboText : Videos of texts collected using navigation robo

15 Jul 11, 2022
Generic U-Net Tensorflow implementation for image segmentation

Tensorflow Unet Warning This project is discontinued in favour of a Tensorflow 2 compatible reimplementation of this project found under https://githu

Joel Akeret 1.8k Dec 10, 2022
Video Instance Segmentation with a Propose-Reduce Paradigm (ICCV 2021)

Propose-Reduce VIS This repo contains the official implementation for the paper: Video Instance Segmentation with a Propose-Reduce Paradigm Huaijia Li

DV Lab 39 Nov 23, 2022
Attack on Confidence Estimation algorithm from the paper "Disrupting Deep Uncertainty Estimation Without Harming Accuracy"

Attack on Confidence Estimation (ACE) This repository is the official implementation of "Disrupting Deep Uncertainty Estimation Without Harming Accura

3 Mar 30, 2022
Official Implementation of SimIPU: Simple 2D Image and 3D Point Cloud Unsupervised Pre-Training for Spatial-Aware Visual Representations

Official Implementation of SimIPU SimIPU: Simple 2D Image and 3D Point Cloud Unsupervised Pre-Training for Spatial-Aware Visual Representations Since

Zhyever 37 Dec 01, 2022
PyTorch implementation for our paper "Deep Facial Synthesis: A New Challenge"

FSGAN Here is the official PyTorch implementation for our paper "Deep Facial Synthesis: A New Challenge". This project achieve the translation between

Deng-Ping Fan 32 Oct 10, 2022
Implementation of "Fast and Flexible Temporal Point Processes with Triangular Maps" (Oral @ NeurIPS 2020)

Fast and Flexible Temporal Point Processes with Triangular Maps This repository includes a reference implementation of the algorithms described in "Fa

Oleksandr Shchur 20 Dec 02, 2022
FaceAnon - Anonymize people in images and videos using yolov5-crowdhuman

Face Anonymizer Blur faces from image and video files in /input/ folder. Require

22 Nov 03, 2022
Rethinking the Importance of Implementation Tricks in Multi-Agent Reinforcement Learning

RIIT Our open-source code for RIIT: Rethinking the Importance of Implementation Tricks in Multi-AgentReinforcement Learning. We implement and standard

405 Jan 06, 2023
Self-labelling via simultaneous clustering and representation learning. (ICLR 2020)

Self-labelling via simultaneous clustering and representation learning 🆗 🆗 🎉 NEW models (20th August 2020): Added standard SeLa pretrained torchvis

Yuki M. Asano 469 Jan 02, 2023
Official implementation of "Dynamic Anchor Learning for Arbitrary-Oriented Object Detection" (AAAI2021).

DAL This project hosts the official implementation for our AAAI 2021 paper: Dynamic Anchor Learning for Arbitrary-Oriented Object Detection [arxiv] [c

ming71 215 Nov 28, 2022