Codes for NeurIPS 2021 paper "On the Equivalence between Neural Network and Support Vector Machine".

Overview

On the Equivalence between Neural Network and Support Vector Machine

Codes for NeurIPS 2021 paper "On the Equivalence between Neural Network and Support Vector Machine".

Cite our paper

Yilan Chen, Wei Huang, Lam M. Nguyen, Tsui-Wei Weng, "On the Equivalence between Neural Network and Support Vector Machine", NeurIPS 2021.

@inproceedings{chen2021equiv,
  title={On the equivalence between neural network and support vector machine},
  author={Yilan Chen and Wei Huang and Lam M. Nguyen and Tsui-Wei Weng},
  booktitle={Advances in Neural Information Processing Systems},
  year={2021}
}

Overview

In this paper, we prove the equivalence between neural network (NN) and support vector machine (SVM), specifically, the infinitely wide NN trained by soft margin loss and the standard soft margin SVM with NTK trained by subgradient descent. Our main theoretical results include establishing the equivalence between NN and a broad family of L2 regularized kernel machines (KMs) with finite-width bounds, which cannot be handled by prior work, and showing that every finite-width NN trained by such regularized loss functions is approximately a KM.

Furthermore, we demonstrate our theory can enable three practical applications, including

  • non-vacuous generalization bound of NN via the corresponding KM;
  • non-trivial robustness certificate for the infinite-width NN (while existing robustness verification methods (e.g. IBP, Fast-Lin, CROWN) would provide vacuous bounds);
  • intrinsically more robust infinite-width NNs than those from previous kernel regression.

See our paper and slides for details.

Equivalence between infinite-width NNs and a family of KMs

Code overview

  • train_sgd.py: train the NN and SVM with NTK with stochastic subgradient descent. Plot the results to verify the equivalence.

  • generalization.py: compute non-vacuous generalization bound of NN via the corresponding KM.

  • regression.py: kernel ridge regression with NTK.

  • robust_svm.py:

    • test(): evaluate the robustness of NN using IBP or SVM with our method in the paper.
    • test_regressions(): evaluate the robustness of kernel ridge regression models using our method.
    • bound_ntk():calculate the lower and upper bound for NTK of two-layer fully-connected NN.
  • ibp.py: functions to calculate IBP bounds. Specified for NTK parameterization.

  • models/model.py: codes for constructing fully-connected neural networks with NTK parameterization.

  • config/:

    • svm_sgd.yaml: configurations and hyper-parameters to train NN and SVM.
    • svm_gene.yaml: configurations and hyper-parameters to calculate generalization bound.

Required environments:

This code is tested on the below environments:

python==3.8.8
torch==1.8.1
neural-tangents==0.3.6

Other required packages can be installed using Conda as follows,

conda create -n equiv-nn-svm python=3.8
conda activate equiv-nn-svm
conda install numpy tqdm matplotlib seaborn pyyaml

For the installation of PyTorch, please reference the instructions from https://pytorch.org/get-started/locally/. For the installation and usage of neural-tangents, please reference the instructions at https://github.com/google/neural-tangents.

Experiments

Train NN and SVM to verify the equivalence

python train_sgd.py

Example of the SGD results

SGD results

Example of the GD results

GD results

Computing non-vacuous generalization bound of NN via the corresponding KM

python generalization.py

Example of the generalization bound results

Generalization bound results

Robustness verification of NN

Add your paths to your NN models in the code and separate by the width. Specify the width of the models you want to verify. Then run the test() function in robust_svm.py.

python -c "import robust_svm; robust_svm.test('nn')"

Robustness verification of SVM

Add your paths to your SVM models in the code. Then run the test() function in robust_svm.py.

python -c "import robust_svm; robust_svm.test('svm')"

robustness verification results

Train kernel ridge regression with NTK models

python regression.py

Robustness verification of kernel ridge regression models

Run test_regressions() function in robust_svm.py.

python -c "import robust_svm; robust_svm.test_regressions()"

robustness verification results

Owner
Leslie
Leslie
nnFormer: Interleaved Transformer for Volumetric Segmentation

nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation ". Please

jsguo 610 Dec 28, 2022
The 2nd place solution of 2021 google landmark retrieval on kaggle.

Google_Landmark_Retrieval_2021_2nd_Place_Solution The 2nd place solution of 2021 google landmark retrieval on kaggle. Environment We use cuda 11.1/pyt

229 Dec 13, 2022
Leveraging Two Types of Global Graph for Sequential Fashion Recommendation, ICMR 2021

This is the repo for the paper: Leveraging Two Types of Global Graph for Sequential Fashion Recommendation Requirements OS: Ubuntu 16.04 or higher ver

Yujuan Ding 10 Oct 10, 2022
Code for 2021 NeurIPS --- Towards Multi-Grained Explainability for Graph Neural Networks

ReFine: Multi-Grained Explainability for GNNs This is the official code for Towards Multi-Grained Explainability for Graph Neural Networks (NeurIPS 20

Shirley (Ying-Xin) Wu 47 Dec 16, 2022
[CVPR 2021] Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

[CVPR 2021] Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

Fudan Zhang Vision Group 897 Jan 05, 2023
Customised to detect objects automatically by a given model file(onnx)

LabelImg LabelImg is a graphical image annotation tool. It is written in Python and uses Qt for its graphical interface. Annotations are saved as XML

Heeone Lee 1 Jun 07, 2022
Waymo motion prediction challenge 2021: 3rd place solution

Waymo motion prediction challenge 2021: 3rd place solution 📜 Technical report 🗨️ Presentation 🎉 Announcement 🛆Motion Prediction Channel Website 🛆

158 Jan 08, 2023
An implementation of a sequence to sequence neural network using an encoder-decoder

Keras implementation of a sequence to sequence model for time series prediction using an encoder-decoder architecture. I created this post to share a

Luke Tonin 195 Dec 17, 2022
This repository provides the code for MedViLL(Medical Vision Language Learner).

MedViLL This repository provides the code for MedViLL(Medical Vision Language Learner). Our proposed architecture MedViLL is a single BERT-based model

SuperSuperMoon 39 Jan 05, 2023
Automatically erase objects in the video, such as logo, text, etc.

Video-Auto-Wipe Read English Introduction:Here   本人不定期的基于生成技术制作一些好玩有趣的算法模型,这次带来的作品是“视频擦除”方向的应用模型,它实现的功能是自动感知到视频中我们不想看见的部分(譬如广告、水印、字幕、图标等等)然后进行擦除。由于图标擦

seeprettyface.com 141 Dec 26, 2022
This script scrapes and stores the availability of timeslots for Car Driving Test at all RTA Serivce NSW centres in the state.

This script scrapes and stores the availability of timeslots for Car Driving Test at all RTA Serivce NSW centres in the state. Dependencies Account wi

Balamurugan Soundararaj 21 Dec 14, 2022
[NeurIPS 2021]: Are Transformers More Robust Than CNNs? (Pytorch implementation & checkpoints)

Are Transformers More Robust Than CNNs? Pytorch implementation for NeurIPS 2021 Paper: Are Transformers More Robust Than CNNs? Our implementation is b

Yutong Bai 145 Dec 01, 2022
Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs

Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs This is an implemetation of the paper Few-shot Relation Extraction via Baye

MilaGraph 36 Nov 22, 2022
Accurate identification of bacteriophages from metagenomic data using Transformer

PhaMer is a python library for identifying bacteriophages from metagenomic data. PhaMer is based on a Transorfer model and rely on protein-based vocab

Kenneth Shang 9 Nov 30, 2022
Groceries ARL: Association Rules (Birliktelik Kuralı)

Groceries_ARL Association Rules (Birliktelik Kuralı) Birliktelik kuralları, mark

Şebnem 5 Feb 08, 2022
Image to Image translation, image generataton, few shot learning

Semi-supervised Learning for Few-shot Image-to-Image Translation [paper] Abstract: In the last few years, unpaired image-to-image translation has witn

yaxingwang 49 Nov 18, 2022
Dcf-game-infrastructure-public - Contains all the components necessary to run a DC finals (attack-defense CTF) game from OOO

dcf-game-infrastructure All the components necessary to run a game of the OOO DC

Order of the Overflow 46 Sep 13, 2022
Wikidated : An Evolving Knowledge Graph Dataset of Wikidata’s Revision History

Wikidated Wikidated 1.0 is a dataset of Wikidata’s full revision history, which encodes changes between Wikidata revisions as sets of deletions and ad

Lukas Schmelzeisen 11 Aug 16, 2022
PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

76 Jan 03, 2023
CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation

CPT This repository contains code and checkpoints for CPT. CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Gener

fastNLP 341 Dec 29, 2022