Codes for NeurIPS 2021 paper "On the Equivalence between Neural Network and Support Vector Machine".

Overview

On the Equivalence between Neural Network and Support Vector Machine

Codes for NeurIPS 2021 paper "On the Equivalence between Neural Network and Support Vector Machine".

Cite our paper

Yilan Chen, Wei Huang, Lam M. Nguyen, Tsui-Wei Weng, "On the Equivalence between Neural Network and Support Vector Machine", NeurIPS 2021.

@inproceedings{chen2021equiv,
  title={On the equivalence between neural network and support vector machine},
  author={Yilan Chen and Wei Huang and Lam M. Nguyen and Tsui-Wei Weng},
  booktitle={Advances in Neural Information Processing Systems},
  year={2021}
}

Overview

In this paper, we prove the equivalence between neural network (NN) and support vector machine (SVM), specifically, the infinitely wide NN trained by soft margin loss and the standard soft margin SVM with NTK trained by subgradient descent. Our main theoretical results include establishing the equivalence between NN and a broad family of L2 regularized kernel machines (KMs) with finite-width bounds, which cannot be handled by prior work, and showing that every finite-width NN trained by such regularized loss functions is approximately a KM.

Furthermore, we demonstrate our theory can enable three practical applications, including

  • non-vacuous generalization bound of NN via the corresponding KM;
  • non-trivial robustness certificate for the infinite-width NN (while existing robustness verification methods (e.g. IBP, Fast-Lin, CROWN) would provide vacuous bounds);
  • intrinsically more robust infinite-width NNs than those from previous kernel regression.

See our paper and slides for details.

Equivalence between infinite-width NNs and a family of KMs

Code overview

  • train_sgd.py: train the NN and SVM with NTK with stochastic subgradient descent. Plot the results to verify the equivalence.

  • generalization.py: compute non-vacuous generalization bound of NN via the corresponding KM.

  • regression.py: kernel ridge regression with NTK.

  • robust_svm.py:

    • test(): evaluate the robustness of NN using IBP or SVM with our method in the paper.
    • test_regressions(): evaluate the robustness of kernel ridge regression models using our method.
    • bound_ntk():calculate the lower and upper bound for NTK of two-layer fully-connected NN.
  • ibp.py: functions to calculate IBP bounds. Specified for NTK parameterization.

  • models/model.py: codes for constructing fully-connected neural networks with NTK parameterization.

  • config/:

    • svm_sgd.yaml: configurations and hyper-parameters to train NN and SVM.
    • svm_gene.yaml: configurations and hyper-parameters to calculate generalization bound.

Required environments:

This code is tested on the below environments:

python==3.8.8
torch==1.8.1
neural-tangents==0.3.6

Other required packages can be installed using Conda as follows,

conda create -n equiv-nn-svm python=3.8
conda activate equiv-nn-svm
conda install numpy tqdm matplotlib seaborn pyyaml

For the installation of PyTorch, please reference the instructions from https://pytorch.org/get-started/locally/. For the installation and usage of neural-tangents, please reference the instructions at https://github.com/google/neural-tangents.

Experiments

Train NN and SVM to verify the equivalence

python train_sgd.py

Example of the SGD results

SGD results

Example of the GD results

GD results

Computing non-vacuous generalization bound of NN via the corresponding KM

python generalization.py

Example of the generalization bound results

Generalization bound results

Robustness verification of NN

Add your paths to your NN models in the code and separate by the width. Specify the width of the models you want to verify. Then run the test() function in robust_svm.py.

python -c "import robust_svm; robust_svm.test('nn')"

Robustness verification of SVM

Add your paths to your SVM models in the code. Then run the test() function in robust_svm.py.

python -c "import robust_svm; robust_svm.test('svm')"

robustness verification results

Train kernel ridge regression with NTK models

python regression.py

Robustness verification of kernel ridge regression models

Run test_regressions() function in robust_svm.py.

python -c "import robust_svm; robust_svm.test_regressions()"

robustness verification results

Owner
Leslie
Leslie
NaturalCC is a sequence modeling toolkit that allows researchers and developers to train custom models

NaturalCC NaturalCC is a sequence modeling toolkit that allows researchers and developers to train custom models for many software engineering tasks,

159 Dec 28, 2022
Deep generative models of 3D grids for structure-based drug discovery

What is liGAN? liGAN is a research codebase for training and evaluating deep generative models for de novo drug design based on 3D atomic density grid

Matt Ragoza 152 Jan 03, 2023
structured-generative-modeling

This repository contains the implementation for the paper Information Theoretic StructuredGenerative Modeling, Specially thanks for the open-source co

0 Oct 11, 2021
Datasets for new state-of-the-art challenge in disentanglement learning

High resolution disentanglement datasets This repository contains the Falcor3D and Isaac3D datasets, which present a state-of-the-art challenge for co

NVIDIA Research Projects 37 May 26, 2022
Code for the Higgs Boson Machine Learning Challenge organised by CERN & EPFL

A method to solve the Higgs boson challenge using Least Squares - Novae This project is the Project 1 of EPFL CS-433 Machine Learning. The project is

Giacomo Orsi 1 Nov 09, 2021
[ICLR 2022 Oral] F8Net: Fixed-Point 8-bit Only Multiplication for Network Quantization

F8Net Fixed-Point 8-bit Only Multiplication for Network Quantization (ICLR 2022 Oral) OpenReview | arXiv | PDF | Model Zoo | BibTex PyTorch implementa

Snap Research 76 Dec 13, 2022
A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.

Website | Documentation | Tutorials | Installation | Release Notes CatBoost is a machine learning method based on gradient boosting over decision tree

CatBoost 6.9k Jan 04, 2023
On the Limits of Pseudo Ground Truth in Visual Camera Re-Localization

On the Limits of Pseudo Ground Truth in Visual Camera Re-Localization This repository contains the evaluation code and alternative pseudo ground truth

Torsten Sattler 36 Dec 22, 2022
Paaster is a secure by default end-to-end encrypted pastebin built with the objective of simplicity.

Follow the development of our desktop client here Paaster Paaster is a secure by default end-to-end encrypted pastebin built with the objective of sim

Ward 211 Dec 25, 2022
SW components and demos for visual kinship recognition. An emphasis is put on the FIW dataset-- data loaders, benchmarks, results in summary.

FIW Data Development Kit Table of Contents Introduction Families In the Wild Database Publications Organization To Do License Getting Involved Introdu

Joseph P. Robinson 12 Jun 04, 2022
Byzantine-robust decentralized learning via self-centered clipping

Byzantine-robust decentralized learning via self-centered clipping In this paper, we study the challenging task of Byzantine-robust decentralized trai

EPFL Machine Learning and Optimization Laboratory 4 Aug 27, 2022
Repository containing the PhD Thesis "Formal Verification of Deep Reinforcement Learning Agents"

Getting Started This repository contains the code used for the following publications: Probabilistic Guarantees for Safe Deep Reinforcement Learning (

Edoardo Bacci 5 Aug 31, 2022
PyTorch implementation of "Conformer: Convolution-augmented Transformer for Speech Recognition" (INTERSPEECH 2020)

PyTorch implementation of Conformer: Convolution-augmented Transformer for Speech Recognition. Transformer models are good at capturing content-based

Soohwan Kim 565 Jan 04, 2023
Tree Nested PyTorch Tensor Lib

DI-treetensor treetensor is a generalized tree-based tensor structure mainly developed by OpenDILab Contributors. Almost all the operation can be supp

OpenDILab 167 Dec 29, 2022
Colab notebook and additional materials for Python-driven analysis of redlining data in Philadelphia

RedliningExploration The Google Colaboratory file contained in this repository contains work inspired by a project on educational inequality in the Ph

Benjamin Warren 1 Jan 20, 2022
Ratatoskr: Worcester Tech's conference scheduling system

Ratatoskr: Worcester Tech's conference scheduling system In Norse mythology, Ratatoskr is a squirrel who runs up and down the world tree Yggdrasil to

4 Dec 22, 2022
ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

ManimML ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

259 Jan 04, 2023
Creating predictive checklists from data using integer programming.

Learning Optimal Predictive Checklists A Python package to learn simple predictive checklists from data subject to customizable constraints. For more

Healthy ML 5 Apr 19, 2022
Pixel Consensus Voting for Panoptic Segmentation (CVPR 2020)

Implementation for Pixel Consensus Voting (CVPR 2020). This codebase contains the essential ingredients of PCV, including various spatial discretizati

Haochen 23 Oct 25, 2022
GANSketchingJittor - Implementation of Sketch Your Own GAN in Jittor

GANSketching in Jittor Implementation of (Sketch Your Own GAN) in Jittor(计图). Or

Bernard Tan 10 Jul 02, 2022