Official Implementation of SimIPU: Simple 2D Image and 3D Point Cloud Unsupervised Pre-Training for Spatial-Aware Visual Representations

Related tags

Deep LearningSimIPU
Overview

Official Implementation of SimIPU

  • SimIPU: Simple 2D Image and 3D Point Cloud Unsupervised Pre-Training for Spatial-Aware Visual Representations
  • Since the code is still waiting for release, if you have any question with reproduction, feel free to contact us. We will try our best to help you.
  • Currently, the core code of SimIPU is implemented in the commercial project. We are trying our best to make the code publicly available.
Comments
  • Question about augmentation

    Question about augmentation

    Hi, I'm a little confused about the data augmentation.

    1. How did you set img_aug when img_moco=True? It seems that we need an 'img_pipeline' in 'simipu_kitti.py', right?
    2. For 3D augmentation, it seems that it is done in this line. So the 3D augmentation is done based on the point features instead the raw points, right? If I want to try moco=True, how to set 3D augmentation? should I do this in the dataset building part? https://github.com/zhyever/SimIPU/blob/5b346e392c161a5e9fdde09b1692656bc7cd3faf/project_cl/decorator/inter_intro_decorator_moco_better.py#L394

    Looking forward to your reply. Many thanks.

    opened by sunnyHelen 2
  • error for env setup:ImportError: cannot import name 'ball_query_ext' from 'mmdet3d.ops.ball_query'

    error for env setup:ImportError: cannot import name 'ball_query_ext' from 'mmdet3d.ops.ball_query'

    Thanks for your insightful paper and clear code repo!

    Hi, I met with the ImportError: cannot import name 'ball_query_ext' from 'mmdet3d.ops.ball_query' when run the command bash tools/dist_train.sh project_cl/configs/simipu/simipu_kitti.py 1 --work_dir ./

    Do you know how to solve it?

    Traceback (most recent call last): File "tools/train.py", line 16, in from mmdet3d.apis import train_model File "/mnt/lustre/xxh/SimIPU-main/mmdet3d/apis/init.py", line 1, in from .inference import (convert_SyncBN, inference_detector, File "/mnt/lustre/xxh/SimIPU-main/mmdet3d/apis/inference.py", line 10, in from mmdet3d.core import (Box3DMode, DepthInstance3DBoxes, File "/mnt/lustre/xxh/SimIPU-main/mmdet3d/core/init.py", line 2, in from .bbox import * # noqa: F401, F403 File "/mnt/lustre/xxh/SimIPU-main/mmdet3d/core/bbox/init.py", line 4, in from .iou_calculators import (AxisAlignedBboxOverlaps3D, BboxOverlaps3D, File "/mnt/lustre/xxh/SimIPU-main/mmdet3d/core/bbox/iou_calculators/init.py", line 1, in from .iou3d_calculator import (AxisAlignedBboxOverlaps3D, BboxOverlaps3D, File "/mnt/lustre/xxh/SimIPU-main/mmdet3d/core/bbox/iou_calculators/iou3d_calculator.py", line 5, in from ..structures import get_box_type File "/mnt/lustre/xxh/SimIPU-main/mmdet3d/core/bbox/structures/init.py", line 1, in from .base_box3d import BaseInstance3DBoxes File "/mnt/lustre/xxh/SimIPU-main/mmdet3d/core/bbox/structures/base_box3d.py", line 5, in from mmdet3d.ops.iou3d import iou3d_cuda File "/mnt/lustre/xxh/SimIPU-main/mmdet3d/ops/init.py", line 5, in from .ball_query import ball_query File "/mnt/lustre/xxh/SimIPU-main/mmdet3d/ops/ball_query/init.py", line 1, in from .ball_query import ball_query File "/mnt/lustre/xxh/SimIPU-main/mmdet3d/ops/ball_query/ball_query.py", line 4, in from . import ball_query_ext ImportError: cannot import name 'ball_query_ext' from 'mmdet3d.ops.ball_query' (/mnt/lustre/xxh/SimIPU-main/mmdet3d/ops/ball_query/init.py)

    I noticed that you once met with the same error. https://github.com/open-mmlab/mmdetection3d/issues/503#issuecomment-847618114

    So, I would like to ask for your help~ Hopefully you have a good solution. :)

    opened by JerryX1110 2
  • A question about eq5 and eq6

    A question about eq5 and eq6

    Thanks for your inspiring work. I have some wonder about eq5 and eq6. As far as I know, After eq5, f should be a tensor which is a global feature with shape (batchsize * 2048 * 1 * 1), how can you sample corresponding image features by projection location? After all, there's no spatial information in f anymore. Or maybe you got features from a previous layer of ResNet? Looking forward to your reply.

    opened by lianchengmingjue 2
  • A question about Tab.5 in Ablation Study

    A question about Tab.5 in Ablation Study

    Thanks for your excellent work first! I have a question about Tab.5 in Ablation Study. Why "Scratch" equals "SimIPU w/o inter-module ", which means that the intra-module is useless?

    opened by Trent-tangtao 1
  • Have you tried not to crop gradient of f^{\alpha} in eq7?

    Have you tried not to crop gradient of f^{\alpha} in eq7?

    Hi, I like your good work! I am wondering have you tried not to crop the gradient of $f^{\alpha}$ in eq7? If you crop the gradient, it seems like the pertaining of the point branch cannot learn anything from the image branch.

    opened by Hiusam 1
  • issues about create_data

    issues about create_data

    Hi, thanks for sharing your great work. I encounter some issues during creating data by running create_data.py First create reduced point cloud for training set [ ] 0/3712, elapsed: 0s, ETA:Traceback (most recent call last): File "tools/create_data.py", line 247, in
    out_dir=args.out_dir)
    File "tools/create_data.py", line 24, in kitti_data_prep
    kitti.create_reduced_point_cloud(root_path, info_prefix)
    File "/mnt/lustre/chenzhuo1/hzha/SimIPU/tools/data_converter/kitti_converter.py", line 374, in create_reduced_point_cloud
    _create_reduced_point_cloud(data_path, train_info_path, save_path)
    File "/mnt/lustre/chenzhuo1/hzha/SimIPU/tools/data_converter/kitti_converter.py", line 314, in _create_reduced_point_cloud
    count=-1).reshape([-1, num_features])
    ValueError: cannot reshape array of size 461536 into shape (6)

    It seems to set the num_features=4 and front_camera_id=2? in this line: https://github.com/zhyever/SimIPU/blob/5b346e392c161a5e9fdde09b1692656bc7cd3faf/tools/data_converter/kitti_converter.py#L291

    I assume doing this can solve the problem but encounter another problem when Create GT Database of KittiDataset
    [ ] 0/3712, elapsed: 0s, ETA:Traceback (most recent call last):
    File "tools/create_data.py", line 247, in
    out_dir=args.out_dir)
    File "tools/create_data.py", line 44, in kitti_data_prep
    with_bbox=True) # for moca
    File "/mnt/lustre/chenzhuo1/hzha/SimIPU/tools/data_converter/create_gt_database.py", line 275, in create_groundtruth_database
    P0 = np.array(example['P0']).reshape(4, 4)
    KeyError: 'P0'

    Can you help me figure out how to solve these issues?

    opened by sunnyHelen 21
Owner
Zhyever
Keep going.
Zhyever
PyTorch implementation of the paper Ultra Fast Structure-aware Deep Lane Detection

PyTorch implementation of the paper Ultra Fast Structure-aware Deep Lane Detection

1.4k Jan 06, 2023
DropNAS: Grouped Operation Dropout for Differentiable Architecture Search

DropNAS: Grouped Operation Dropout for Differentiable Architecture Search DropNAS, a grouped operation dropout method for one-level DARTS, with better

weijunhong 4 Aug 15, 2022
This is the repository for The Machine Learning Workshops, published by AI DOJO

This is the repository for The Machine Learning Workshops, published by AI DOJO. It contains all the workshop's code with supporting project files necessary to work through the code.

AI Dojo 12 May 06, 2022
Python scripts form performing stereo depth estimation using the HITNET model in ONNX.

ONNX-HITNET-Stereo-Depth-estimation Python scripts form performing stereo depth estimation using the HITNET model in ONNX. Stereo depth estimation on

Ibai Gorordo 30 Nov 08, 2022
Multi-view 3D reconstruction using neural rendering. Unofficial implementation of UNISURF, VolSDF, NeuS and more.

Volume rendering + 3D implicit surface Showcase What? previous: surface rendering; now: volume rendering previous: NeRF's volume density; now: implici

Jianfei Guo 682 Jan 04, 2023
Pytorch implementation of the paper: "SAPNet: Segmentation-Aware Progressive Network for Perceptual Contrastive Image Deraining"

SAPNet This repository contains the official Pytorch implementation of the paper: "SAPNet: Segmentation-Aware Progressive Network for Perceptual Contr

11 Oct 17, 2022
Activity image-based video retrieval

Cross-modal-retrieval Our approach is focus on Activity Image-to-Video Retrieval (AIVR) task. The compared methods are state-of-the-art single modalit

BCMI 75 Oct 21, 2021
Distance-Ratio-Based Formulation for Metric Learning

Distance-Ratio-Based Formulation for Metric Learning Environment Python3 Pytorch (http://pytorch.org/) (version 1.6.0+cu101) json tqdm Preparing datas

Hyeongji Kim 1 Dec 07, 2022
Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic

Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic [Paper] [Colab is coming soon] Approach Example Usage To r

170 Jan 03, 2023
RoboDesk A Multi-Task Reinforcement Learning Benchmark

RoboDesk A Multi-Task Reinforcement Learning Benchmark If you find this open source release useful, please reference in your paper: @misc{kannan2021ro

Google Research 66 Oct 07, 2022
Repository of our paper 'Refer-it-in-RGBD' in CVPR 2021

Refer-it-in-RGBD This is the repository of our paper 'Refer-it-in-RGBD: A Bottom-up Approach for 3D Visual Grounding in RGBD Images' in CVPR 2021 Pape

Haolin Liu 34 Nov 07, 2022
details on efforts to dump the Watermelon Games Paprium cart

Reminder, if you like these repos, fork them so they don't disappear https://github.com/ArcadeHustle/WatermelonPapriumDump/fork Big thanks to Fonzie f

Hustle Arcade 29 Dec 11, 2022
Code and data of the Fine-Grained R2R Dataset proposed in paper Sub-Instruction Aware Vision-and-Language Navigation

Fine-Grained R2R Code and data of the Fine-Grained R2R Dataset proposed in the EMNLP2020 paper Sub-Instruction Aware Vision-and-Language Navigation. C

YicongHong 34 Nov 15, 2022
The implementation of "Optimizing Shoulder to Shoulder: A Coordinated Sub-Band Fusion Model for Real-Time Full-Band Speech Enhancement"

SF-Net for fullband SE This is the repo of the manuscript "Optimizing Shoulder to Shoulder: A Coordinated Sub-Band Fusion Model for Real-Time Full-Ban

Guochen Yu 36 Dec 02, 2022
Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive Fusion (CVPR 2021)

Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive Fusion (CVPR 2021) This repository is for BAAF-Net introduce

90 Dec 29, 2022
NeWT: Natural World Tasks

NeWT: Natural World Tasks This repository contains resources for working with the NeWT dataset. ❗ At this time the binary tasks are not publicly avail

Visipedia 26 Oct 18, 2022
Christmas face app for Decathlon xmas coding party!

Christmas Face Application Use this library to create the perfect picture for your christmas cards! Done by Hasib Zunair, Guillaume Brassard and Samue

Hasib Zunair 4 Dec 20, 2021
Official PyTorch(Geometric) implementation of DPGNN(DPGCN) in "Distance-wise Prototypical Graph Neural Network for Node Imbalance Classification"

DPGNN This repository is an official PyTorch(Geometric) implementation of DPGNN(DPGCN) in "Distance-wise Prototypical Graph Neural Network for Node Im

Yu Wang (Jack) 18 Oct 12, 2022
PyTorch implementation of "LayoutTransformer: Layout Generation and Completion with Self-attention"

PyTorch implementation of "LayoutTransformer: Layout Generation and Completion with Self-attention" to appear in ICCV 2021

Kamal Gupta 75 Dec 23, 2022
PyTorch Implementation for "ForkGAN with SIngle Rainy NIght Images: Leveraging the RumiGAN to See into the Rainy Night"

ForkGAN with Single Rainy Night Images: Leveraging the RumiGAN to See into the Rainy Night By Seri Lee, Department of Engineering, Seoul National Univ

Seri Lee 52 Oct 12, 2022