Official Implementation of SimIPU: Simple 2D Image and 3D Point Cloud Unsupervised Pre-Training for Spatial-Aware Visual Representations

Related tags

Deep LearningSimIPU
Overview

Official Implementation of SimIPU

  • SimIPU: Simple 2D Image and 3D Point Cloud Unsupervised Pre-Training for Spatial-Aware Visual Representations
  • Since the code is still waiting for release, if you have any question with reproduction, feel free to contact us. We will try our best to help you.
  • Currently, the core code of SimIPU is implemented in the commercial project. We are trying our best to make the code publicly available.
Comments
  • Question about augmentation

    Question about augmentation

    Hi, I'm a little confused about the data augmentation.

    1. How did you set img_aug when img_moco=True? It seems that we need an 'img_pipeline' in 'simipu_kitti.py', right?
    2. For 3D augmentation, it seems that it is done in this line. So the 3D augmentation is done based on the point features instead the raw points, right? If I want to try moco=True, how to set 3D augmentation? should I do this in the dataset building part? https://github.com/zhyever/SimIPU/blob/5b346e392c161a5e9fdde09b1692656bc7cd3faf/project_cl/decorator/inter_intro_decorator_moco_better.py#L394

    Looking forward to your reply. Many thanks.

    opened by sunnyHelen 2
  • error for env setup:ImportError: cannot import name 'ball_query_ext' from 'mmdet3d.ops.ball_query'

    error for env setup:ImportError: cannot import name 'ball_query_ext' from 'mmdet3d.ops.ball_query'

    Thanks for your insightful paper and clear code repo!

    Hi, I met with the ImportError: cannot import name 'ball_query_ext' from 'mmdet3d.ops.ball_query' when run the command bash tools/dist_train.sh project_cl/configs/simipu/simipu_kitti.py 1 --work_dir ./

    Do you know how to solve it?

    Traceback (most recent call last): File "tools/train.py", line 16, in from mmdet3d.apis import train_model File "/mnt/lustre/xxh/SimIPU-main/mmdet3d/apis/init.py", line 1, in from .inference import (convert_SyncBN, inference_detector, File "/mnt/lustre/xxh/SimIPU-main/mmdet3d/apis/inference.py", line 10, in from mmdet3d.core import (Box3DMode, DepthInstance3DBoxes, File "/mnt/lustre/xxh/SimIPU-main/mmdet3d/core/init.py", line 2, in from .bbox import * # noqa: F401, F403 File "/mnt/lustre/xxh/SimIPU-main/mmdet3d/core/bbox/init.py", line 4, in from .iou_calculators import (AxisAlignedBboxOverlaps3D, BboxOverlaps3D, File "/mnt/lustre/xxh/SimIPU-main/mmdet3d/core/bbox/iou_calculators/init.py", line 1, in from .iou3d_calculator import (AxisAlignedBboxOverlaps3D, BboxOverlaps3D, File "/mnt/lustre/xxh/SimIPU-main/mmdet3d/core/bbox/iou_calculators/iou3d_calculator.py", line 5, in from ..structures import get_box_type File "/mnt/lustre/xxh/SimIPU-main/mmdet3d/core/bbox/structures/init.py", line 1, in from .base_box3d import BaseInstance3DBoxes File "/mnt/lustre/xxh/SimIPU-main/mmdet3d/core/bbox/structures/base_box3d.py", line 5, in from mmdet3d.ops.iou3d import iou3d_cuda File "/mnt/lustre/xxh/SimIPU-main/mmdet3d/ops/init.py", line 5, in from .ball_query import ball_query File "/mnt/lustre/xxh/SimIPU-main/mmdet3d/ops/ball_query/init.py", line 1, in from .ball_query import ball_query File "/mnt/lustre/xxh/SimIPU-main/mmdet3d/ops/ball_query/ball_query.py", line 4, in from . import ball_query_ext ImportError: cannot import name 'ball_query_ext' from 'mmdet3d.ops.ball_query' (/mnt/lustre/xxh/SimIPU-main/mmdet3d/ops/ball_query/init.py)

    I noticed that you once met with the same error. https://github.com/open-mmlab/mmdetection3d/issues/503#issuecomment-847618114

    So, I would like to ask for your help~ Hopefully you have a good solution. :)

    opened by JerryX1110 2
  • A question about eq5 and eq6

    A question about eq5 and eq6

    Thanks for your inspiring work. I have some wonder about eq5 and eq6. As far as I know, After eq5, f should be a tensor which is a global feature with shape (batchsize * 2048 * 1 * 1), how can you sample corresponding image features by projection location? After all, there's no spatial information in f anymore. Or maybe you got features from a previous layer of ResNet? Looking forward to your reply.

    opened by lianchengmingjue 2
  • A question about Tab.5 in Ablation Study

    A question about Tab.5 in Ablation Study

    Thanks for your excellent work first! I have a question about Tab.5 in Ablation Study. Why "Scratch" equals "SimIPU w/o inter-module ", which means that the intra-module is useless?

    opened by Trent-tangtao 1
  • Have you tried not to crop gradient of f^{\alpha} in eq7?

    Have you tried not to crop gradient of f^{\alpha} in eq7?

    Hi, I like your good work! I am wondering have you tried not to crop the gradient of $f^{\alpha}$ in eq7? If you crop the gradient, it seems like the pertaining of the point branch cannot learn anything from the image branch.

    opened by Hiusam 1
  • issues about create_data

    issues about create_data

    Hi, thanks for sharing your great work. I encounter some issues during creating data by running create_data.py First create reduced point cloud for training set [ ] 0/3712, elapsed: 0s, ETA:Traceback (most recent call last): File "tools/create_data.py", line 247, in
    out_dir=args.out_dir)
    File "tools/create_data.py", line 24, in kitti_data_prep
    kitti.create_reduced_point_cloud(root_path, info_prefix)
    File "/mnt/lustre/chenzhuo1/hzha/SimIPU/tools/data_converter/kitti_converter.py", line 374, in create_reduced_point_cloud
    _create_reduced_point_cloud(data_path, train_info_path, save_path)
    File "/mnt/lustre/chenzhuo1/hzha/SimIPU/tools/data_converter/kitti_converter.py", line 314, in _create_reduced_point_cloud
    count=-1).reshape([-1, num_features])
    ValueError: cannot reshape array of size 461536 into shape (6)

    It seems to set the num_features=4 and front_camera_id=2? in this line: https://github.com/zhyever/SimIPU/blob/5b346e392c161a5e9fdde09b1692656bc7cd3faf/tools/data_converter/kitti_converter.py#L291

    I assume doing this can solve the problem but encounter another problem when Create GT Database of KittiDataset
    [ ] 0/3712, elapsed: 0s, ETA:Traceback (most recent call last):
    File "tools/create_data.py", line 247, in
    out_dir=args.out_dir)
    File "tools/create_data.py", line 44, in kitti_data_prep
    with_bbox=True) # for moca
    File "/mnt/lustre/chenzhuo1/hzha/SimIPU/tools/data_converter/create_gt_database.py", line 275, in create_groundtruth_database
    P0 = np.array(example['P0']).reshape(4, 4)
    KeyError: 'P0'

    Can you help me figure out how to solve these issues?

    opened by sunnyHelen 21
Owner
Zhyever
Keep going.
Zhyever
This repository is the official implementation of Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning (NeurIPS21).

Core-tuning This repository is the official implementation of ``Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regular

vanint 18 Dec 17, 2022
Automatic Differentiation Multipole Moment Molecular Forcefield

Automatic Differentiation Multipole Moment Molecular Forcefield Performance notes On a single gpu, using waterbox_31ang.pdb example from MPIDplugin wh

4 Jan 07, 2022
Rational Activation Functions - Replacing Padé Activation Units

Rational Activations - Learnable Rational Activation Functions First introduce as PAU in Padé Activation Units: End-to-end Learning of Activation Func

<a href=[email protected]"> 38 Nov 22, 2022
The FIRST GANs-based omics-to-omics translation framework

OmiTrans Please also have a look at our multi-omics multi-task DL freamwork 👀 : OmiEmbed The FIRST GANs-based omics-to-omics translation framework Xi

Xiaoyu Zhang 6 Dec 14, 2022
VOneNet: CNNs with a Primary Visual Cortex Front-End

VOneNet: CNNs with a Primary Visual Cortex Front-End A family of biologically-inspired Convolutional Neural Networks (CNNs). VOneNets have the followi

The DiCarlo Lab at MIT 99 Dec 22, 2022
Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

ood-text-emnlp Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them" Files fine_tune.py is used to finetune the GPT-2 mo

Udit Arora 19 Oct 28, 2022
Stochastic Scene-Aware Motion Prediction

Stochastic Scene-Aware Motion Prediction [Project Page] [Paper] Description This repository contains the training code for MotionNet and GoalNet of SA

Mohamed Hassan 31 Dec 09, 2022
Patch SVDD for Image anomaly detection

Patch SVDD Patch SVDD for Image anomaly detection. Paper: https://arxiv.org/abs/2006.16067 (published in ACCV 2020). Original Code : https://github.co

Hong-Jeongmin 0 Dec 03, 2021
Implementation of H-UCRL Algorithm

Implementation of H-UCRL Algorithm This repository is an implementation of the H-UCRL algorithm introduced in Curi, S., Berkenkamp, F., & Krause, A. (

Sebastian Curi 25 May 20, 2022
NovelD: A Simple yet Effective Exploration Criterion

NovelD: A Simple yet Effective Exploration Criterion Intro This is an implementation of the method proposed in NovelD: A Simple yet Effective Explorat

29 Dec 05, 2022
Official code of "Mitigating the Mutual Error Amplification for Semi-Supervised Object Detection"

CrossTeaching-SSOD 0. Introduction Official code of "Mitigating the Mutual Error Amplification for Semi-Supervised Object Detection" This repo include

Bruno Ma 9 Nov 29, 2022
DABO: Data Augmentation with Bilevel Optimization

DABO: Data Augmentation with Bilevel Optimization [Paper] The goal is to automatically learn an efficient data augmentation regime for image classific

ElementAI 24 Aug 12, 2022
E-RAFT: Dense Optical Flow from Event Cameras

E-RAFT: Dense Optical Flow from Event Cameras This is the code for the paper E-RAFT: Dense Optical Flow from Event Cameras by Mathias Gehrig, Mario Mi

Robotics and Perception Group 71 Dec 12, 2022
Unofficial implementation of Google "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization" in PyTorch

CutPaste CutPaste: image from paper Unofficial implementation of Google's "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization"

Lilit Yolyan 59 Nov 27, 2022
Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight)

Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight) Abstract Due to the limited and even imbalanced dat

Hanzhe Hu 99 Dec 12, 2022
Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks

MGANs Training & Testing code (torch), pre-trained models and supplementary materials for "Precomputed Real-Time Texture Synthesis with Markovian Gene

290 Nov 15, 2022
【steal piano】GitHub偷情分析工具!

【steal piano】GitHub偷情分析工具! 你是否有这样的困扰,有一天你的仓库被很多人加了star,但是你却不知道这些人都是从哪来的? 别担心,GitHub偷情分析工具帮你轻松解决问题! 原理 GitHub偷情分析工具透过分析star的时间以及他们之间的follow关系,可以推测出每个st

黄巍 442 Dec 21, 2022
Implementation for NeurIPS 2021 Submission: SparseFed

READ THIS FIRST This repo is an anonymized version of an existing repository of GitHub, for the AIStats 2021 submission: SparseFed: Mitigating Model P

2 Jun 15, 2022
PyTorch reimplementation of minimal-hand (CVPR2020)

Minimal Hand Pytorch Unofficial PyTorch reimplementation of minimal-hand (CVPR2020). you can also find in youtube or bilibili bare hand youtube or bil

Hao Meng 228 Dec 29, 2022