Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

Overview

ood-text-emnlp

Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

Files

  • fine_tune.py is used to finetune the GPT-2 models, and roberta_fine_tune.py is used to finetune the Roberta models.
  • perplexity.py and msp_eval.py is used to find the PPLs and MSPs of a dataset pair's exxamples using the finetuned model.

How to run

These steps show how to train both density estimation and calibration models on the MNLI dataset, and evaluated against SNLI.

A differet dataset pair can be used by updating the approriate dataset_name or id_data/ood_data values as shown below:

Training the Density Estimation Model (GPT-2)

Two options:

  1. Using HF Datasets -
    python fine_tune.py --dataset_name glue --dataset_config_name mnli --key premise --key2 hypothesis
    
    This also generates a txt train file corresponding to the dataset's text.
  2. Using previously generated txt file -
    python fine_tune.py --train_file data/glue_mnli_train.txt --fname glue_mnli"
    

Finding Perplexity (PPL)

This uses the txt files generated after running fine_tune.py to find the perplexity of the ID model on both ID and OOD validation sets -

id_data="glue_mnli"
ood_data="snli"
python perplexity.py --model_path ckpts/gpt2-$id_data/ --dataset_path data/${ood_data}_val.txt --fname ${id_data}_$ood_data

python perplexity.py --model_path ckpts/gpt2-$id_data/ --dataset_path data/${id_data}_val.txt --fname ${id_data}_$id_data

Training the Calibration Model (RoBERTa)

Two options:

  1. Using HF Datasets -

    id_data="mnli"
    python roberta_fine_tune.py --task_name $id_data --output_dir /scratch/ua388/roberta_ckpts/roberta-$id_data --fname ${id_data}_$id_data
    
  2. Using txt file generated earlier -

    id_data="mnli"
    python roberta_fine_tune.py --train_file data/mnli/${id_data}_conditional_train.txt --val_file data/mnli/${id_data}_val.txt --output_dir roberta_ckpts/roberta-$id_data --fname ${id_data}_$id_data"
    

    The *_conditional_train.txt file contains both the labels as well as the text.

Finding Maximum Softmax Probability (MSP)

Two options:

  1. Using HF Datasets -
    id_data="mnli"
    ood_data="snli"
    python msp_eval.py --model_path roberta_ckpts/roberta-$id_data --dataset_name $ood_data --fname ${id_data}_$ood_data
    
  2. Using txt file generated earlier -
    id_data="mnli"
    ood_data="snli"
    python msp_eval.py --model_path roberta_ckpts/roberta-$id_data --val_file data/${ood_data}_val.txt --fname ${id_data}_$ood_data --save_msp True
    

Evaluating AUROC

  1. Compute AUROC of PPL using compute_auroc in utils.py -

    id_data = 'glue_mnli'
    ood_data = 'snli'
    id_pps = utils.read_model_out(f'output/gpt2/{id_data}_{id_data}_pps.npy')
    ood_pps = utils.read_model_out(f'output/gpt2/{id_data}_{ood_data}_pps.npy')
    score = compute_auroc(id_pps, ood_pps)
    print(score)
    
  2. Compute AUROC of MSP -

     id_data = 'mnli'
     ood_data = 'snli'
     id_msp = utils.read_model_out(f'output/roberta/{id_data}_{id_data}_msp.npy')
     ood_msp = utils.read_model_out(f'output/roberta/{id_data}_{ood_data}_msp.npy')
     score = compute_auroc(-id_msp, -ood_msp)
     print(score)
    
Owner
Udit Arora
CS grad student at NYU
Udit Arora
Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy" (ICLR 2022 Spotlight)

About Code release for Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy (ICLR 2022 Spotlight)

THUML @ Tsinghua University 221 Dec 31, 2022
The self-supervised goal reaching benchmark introduced in Discovering and Achieving Goals via World Models

Lexa-Benchmark Codebase for the self-supervised goal reaching benchmark introduced in 'Discovering and Achieving Goals via World Models'. Setup Create

1 Oct 14, 2021
Code to reproduce the results in "Visually Grounded Reasoning across Languages and Cultures", EMNLP 2021.

marvl-code [WIP] This is the implementation of the approaches described in the paper: Fangyu Liu*, Emanuele Bugliarello*, Edoardo M. Ponti, Siva Reddy

25 Nov 15, 2022
QRec: A Python Framework for quick implementation of recommender systems (TensorFlow Based)

Introduction QRec is a Python framework for recommender systems (Supported by Python 3.7.4 and Tensorflow 1.14+) in which a number of influential and

Yu 1.4k Dec 30, 2022
YOLOv5 + ROS2 object detection package

YOLOv5-ROS YOLOv5 + ROS2 object detection package This program changes the input of detect.py (ultralytics/yolov5) to sensor_msgs/Image of ROS2. Requi

Ar-Ray 23 Dec 19, 2022
Code for "Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance" at NeurIPS 2021

Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance Justin Lim, Christina X Ji, Michael Oberst, Saul Blecker, Leor

Sontag Lab 3 Feb 03, 2022
Lightweight library to build and train neural networks in Theano

Lasagne Lasagne is a lightweight library to build and train neural networks in Theano. Its main features are: Supports feed-forward networks such as C

Lasagne 3.8k Dec 29, 2022
A Genetic Programming platform for Python with TensorFlow for wicked-fast CPU and GPU support.

Karoo GP Karoo GP is an evolutionary algorithm, a genetic programming application suite written in Python which supports both symbolic regression and

Kai Staats 149 Jan 09, 2023
This is a computer vision based implementation of the popular childhood game 'Hand Cricket/Odd or Even' in python

Hand Cricket Table of Content Overview Installation Game rules Project Details Future scope Overview This is a computer vision based implementation of

Abhinav R Nayak 6 Jan 12, 2022
GANmouflage: 3D Object Nondetection with Texture Fields

GANmouflage: 3D Object Nondetection with Texture Fields Rui Guo1 Jasmine Collins

29 Aug 10, 2022
Gym Threat Defense

Gym Threat Defense The Threat Defense environment is an OpenAI Gym implementation of the environment defined as the toy example in Optimal Defense Pol

Hampus Ramström 5 Dec 08, 2022
Source code for the paper "PLOME: Pre-training with Misspelled Knowledge for Chinese Spelling Correction" in ACL2021

PLOME:Pre-training with Misspelled Knowledge for Chinese Spelling Correction (ACL2021) This repository provides the code and data of the work in ACL20

197 Nov 26, 2022
[ECCV'20] Convolutional Occupancy Networks

Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page | Blog Post This repository contains the implementation o

622 Dec 30, 2022
This repository contains a PyTorch implementation of "AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis".

AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis | Project Page | Paper | PyTorch implementation for the paper "AD-NeRF: Audio

551 Dec 29, 2022
A simple, fast, and efficient object detector without FPN

You Only Look One-level Feature (YOLOF), CVPR2021 A simple, fast, and efficient object detector without FPN. This repo provides an implementation for

789 Jan 09, 2023
Danfeng Hong, Lianru Gao, Jing Yao, Bing Zhang, Antonio Plaza, Jocelyn Chanussot. Graph Convolutional Networks for Hyperspectral Image Classification, IEEE TGRS, 2021.

Graph Convolutional Networks for Hyperspectral Image Classification Danfeng Hong, Lianru Gao, Jing Yao, Bing Zhang, Antonio Plaza, Jocelyn Chanussot T

Danfeng Hong 154 Dec 13, 2022
A Framework for Encrypted Machine Learning in TensorFlow

TF Encrypted is a framework for encrypted machine learning in TensorFlow. It looks and feels like TensorFlow, taking advantage of the ease-of-use of t

TF Encrypted 0 Jul 06, 2022
Project for music generation system based on object tracking and CGAN

Project for music generation system based on object tracking and CGAN The project was inspired by MIDINet: A Convolutional Generative Adversarial Netw

1 Nov 21, 2021
One-Shot Neural Ensemble Architecture Search by Diversity-Guided Search Space Shrinking

One-Shot Neural Ensemble Architecture Search by Diversity-Guided Search Space Shrinking This is an official implementation for NEAS presented in CVPR

Multimedia Research 19 Sep 08, 2022
[CVPR 2021] Generative Hierarchical Features from Synthesizing Images

[CVPR 2021] Generative Hierarchical Features from Synthesizing Images

GenForce: May Generative Force Be with You 148 Dec 09, 2022