Official code for "Maximum Likelihood Training of Score-Based Diffusion Models", NeurIPS 2021 (spotlight)

Overview

Maximum Likelihood Training of Score-Based Diffusion Models

This repo contains the official implementation for the paper Maximum Likelihood Training of Score-Based Diffusion Models

by Yang Song*, Conor Durkan*, Iain Murray, and Stefano Ermon. Published in NeurIPS 2021 (spotlight).


We prove the connection between the Kullback–Leibler divergence and the weighted combination of score matching losses used for training score-based generative models. Our results can be viewed as a generalization of both the de Bruijn identity in information theory and the evidence lower bound in variational inference.

Our theoretical results enable ScoreFlow, a continuous normalizing flow model trained with a variational objective, which is much more efficient than neural ODEs. We report the state-of-the-art likelihood on CIFAR-10 and ImageNet 32x32 among all flow models, achieving comparable performance to cutting-edge autoregressive models.

How to run the code

Dependencies

Run the following to install a subset of necessary python packages for our code

pip install -r requirements.txt

Stats files for quantitative evaluation

We provide stats files for computing FID and Inception scores for CIFAR-10 and ImageNet 32x32. You can find cifar10_stats.npz and imagenet32_stats.npz under the directory assets/stats in our Google drive. Download them and save to assets/stats/ in the code repo.

Usage

Train and evaluate our models through main.py. Here are some common options:

main.py:
  --config: Training configuration.
    (default: 'None')
  --eval_folder: The folder name for storing evaluation results
    (default: 'eval')
  --mode: <train|eval|train_deq>: Running mode: train or eval or training the Flow++ variational dequantization model
  --workdir: Working directory
  • config is the path to the config file. Our config files are provided in configs/. They are formatted according to ml_collections and should be quite self-explanatory.

    Naming conventions of config files: the name of a config file contains the following attributes:

    • dataset: Either cifar10 or imagenet32
    • model: Either ddpmpp_continuous or ddpmpp_deep_continuous
  • workdir is the path that stores all artifacts of one experiment, like checkpoints, samples, and evaluation results.

  • eval_folder is the name of a subfolder in workdir that stores all artifacts of the evaluation process, like meta checkpoints for supporting pre-emption recovery, image samples, and numpy dumps of quantitative results.

  • mode is either "train" or "eval" or "train_deq". When set to "train", it starts the training of a new model, or resumes the training of an old model if its meta-checkpoints (for resuming running after pre-emption in a cloud environment) exist in workdir/checkpoints-meta . When set to "eval", it can do the following:

    • Compute the log-likelihood on the training or test dataset.

    • Compute the lower bound of the log-likelihood on the training or test dataset.

    • Evaluate the loss function on the test / validation dataset.

    • Generate a fixed number of samples and compute its Inception score, FID, or KID. Prior to evaluation, stats files must have already been downloaded/computed and stored in assets/stats.

      When set to "train_deq", it trains a Flow++ variational dequantization model to bridge the gap of likelihoods on continuous and discrete images. Recommended if you want to compete with generative models trained on discrete images, such as VAEs and autoregressive models. train_deq mode also supports pre-emption recovery.

These functionalities can be configured through config files, or more conveniently, through the command-line support of the ml_collections package.

Configurations for training

To turn on likelihood weighting, set --config.training.likelihood_weighting. To additionally turn on importance sampling for variance reduction, use --config.training.likelihood_weighting. To train a separate Flow++ variational dequantizer, you need to first finish training a score-based model, then use --mode=train_deq.

Configurations for evaluation

To generate samples and evaluate sample quality, use the --config.eval.enable_sampling flag; to compute log-likelihoods, use the --config.eval.enable_bpd flag, and specify --config.eval.dataset=train/test to indicate whether to compute the likelihoods on the training or test dataset. Turn on --config.eval.bound to evaluate the variational bound for the log-likelihood. Enable --config.eval.dequantizer to use variational dequantization for likelihood computation. --config.eval.num_repeats configures the number of repetitions across the dataset (more can reduce the variance of the likelihoods; default to 5).

Pretrained checkpoints

All checkpoints are provided in this Google drive.

Folder structure:

  • assets: contains cifar10_stats.npz and imagenet32_stats.npz. Necessary for computing FID and Inception scores.
  • <cifar10|imagenet32>_(deep)_<vp|subvp>_(likelihood)_(iw)_(flip). Here the part enclosed in () is optional. deep in the name specifies whether the score model is a deeper architecture (ddpmpp_deep_continuous). likelihood specifies whether the model was trained with likelihood weighting. iw specifies whether the model was trained with importance sampling for variance reduction. flip shows whether the model was trained with horizontal flip for data augmentation. Each folder has the following two subfolders:
    • checkpoints: contains the last checkpoint for the score-based model.
    • flowpp_dequantizer/checkpoints: contains the last checkpoint for the Flow++ variational dequantization model.

References

If you find the code useful for your research, please consider citing

@inproceedings{song2021maximum,
  title={Maximum Likelihood Training of Score-Based Diffusion Models},
  author={Song, Yang and Durkan, Conor and Murray, Iain and Ermon, Stefano},
  booktitle={Thirty-Fifth Conference on Neural Information Processing Systems},
  year={2021}
}

This work is built upon some previous papers which might also interest you:

  • Yang Song and Stefano Ermon. "Generative Modeling by Estimating Gradients of the Data Distribution." Proceedings of the 33rd Annual Conference on Neural Information Processing Systems, 2019.
  • Yang Song and Stefano Ermon. "Improved techniques for training score-based generative models." Proceedings of the 34th Annual Conference on Neural Information Processing Systems, 2020.
  • Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. "Score-Based Generative Modeling through Stochastic Differential Equations". Proceedings of the 9th International Conference on Learning Representations, 2021.
Owner
Yang Song
PhD Candidate in Stanford AI Lab
Yang Song
https://arxiv.org/abs/2102.11005

LogME LogME: Practical Assessment of Pre-trained Models for Transfer Learning How to use Just feed the features f and labels y to the function, and yo

THUML: Machine Learning Group @ THSS 149 Dec 19, 2022
An Intelligent Self-driving Truck System For Highway Transportation

Inceptio Intelligent Truck System An Intelligent Self-driving Truck System For Highway Transportation Note The code is still in development. OS requir

InceptioResearch 11 Jul 13, 2022
PyTorch implementation of PSPNet segmentation network

pspnet-pytorch PyTorch implementation of PSPNet segmentation network Original paper Pyramid Scene Parsing Network Details This is a slightly different

Roman Trusov 532 Dec 29, 2022
Multimodal Temporal Context Network (MTCN)

Multimodal Temporal Context Network (MTCN) This repository implements the model proposed in the paper: Evangelos Kazakos, Jaesung Huh, Arsha Nagrani,

Evangelos Kazakos 13 Nov 24, 2022
Behavioral "black-box" testing for recommender systems

RecList RecList Free software: MIT license Documentation: https://reclist.readthedocs.io. Overview RecList is an open source library providing behavio

Jacopo Tagliabue 375 Dec 30, 2022
SHRIMP: Sparser Random Feature Models via Iterative Magnitude Pruning

SHRIMP: Sparser Random Feature Models via Iterative Magnitude Pruning This repository is the official implementation of "SHRIMP: Sparser Random Featur

Bobby Shi 0 Dec 16, 2021
Official Keras Implementation for UNet++ in IEEE Transactions on Medical Imaging and DLMIA 2018

UNet++: A Nested U-Net Architecture for Medical Image Segmentation UNet++ is a new general purpose image segmentation architecture for more accurate i

Zongwei Zhou 1.8k Dec 27, 2022
Python code to generate art with Generative Adversarial Network

GAN_Canvas_Maker Generating Art using Generative Adversarial Network (GAN) Python code to generate art with Generative Adversarial Network: https://to

Jonny Banana 10 Aug 22, 2022
A toolset of Python programs for signal modeling and indentification via sparse semilinear autoregressors.

SPAAR Description A toolset of Python programs for signal modeling via sparse semilinear autoregressors. References Vides, F. (2021). Computing Semili

Fredy Vides 0 Oct 30, 2021
Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer.

DocEnTR Description Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer. This model is implemented on to

Mohamed Ali Souibgui 74 Jan 07, 2023
PyTorch reimplementation of Diffusion Models

PyTorch pretrained Diffusion Models A PyTorch reimplementation of Denoising Diffusion Probabilistic Models with checkpoints converted from the author'

Patrick Esser 265 Jan 01, 2023
LSTM and QRNN Language Model Toolkit for PyTorch

LSTM and QRNN Language Model Toolkit This repository contains the code used for two Salesforce Research papers: Regularizing and Optimizing LSTM Langu

Salesforce 1.9k Jan 08, 2023
Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques such as online, hashing, allreduce, reductions, learning2search, active, and interactive learning.

This is the Vowpal Wabbit fast online learning code. Why Vowpal Wabbit? Vowpal Wabbit is a machine learning system which pushes the frontier of machin

Vowpal Wabbit 8.1k Jan 06, 2023
The fastai deep learning library

Welcome to fastai fastai simplifies training fast and accurate neural nets using modern best practices Important: This documentation covers fastai v2,

fast.ai 23.2k Jan 07, 2023
HybVIO visual-inertial odometry and SLAM system

HybVIO A visual-inertial odometry system with an optional SLAM module. This is a research-oriented codebase, which has been published for the purposes

Spectacular AI 320 Jan 03, 2023
ANN model for prediction a spatio-temporal distribution of supercooled liquid in mixed-phase clouds using Doppler cloud radar spectra.

VOODOO Revealing supercooled liquid beyond lidar attenuation Explore the docs » Report Bug · Request Feature Table of Contents About The Project Built

remsens-lim 2 Apr 28, 2022
A mini lib that implements several useful functions binding to PyTorch in C++.

Torch-gather A mini library that implements several useful functions binding to PyTorch in C++. What does gather do? Why do we need it? When dealing w

maxwellzh 8 Sep 07, 2022
This repository contains the code used for the implementation of the paper "Probabilistic Regression with HuberDistributions"

Public_prob_regression_with_huber_distributions This repository contains the code used for the implementation of the paper "Probabilistic Regression w

David Mohlin 1 Dec 04, 2021
PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks

Code for the paper "PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks" (ICPR 2020)

Wenwen Yu 498 Dec 24, 2022
Learning Calibrated-Guidance for Object Detection in Aerial Images

Learning Calibrated-Guidance for Object Detection in Aerial Images arxiv We propose a simple yet effective Calibrated-Guidance (CG) scheme to enhance

51 Sep 22, 2022