HybVIO visual-inertial odometry and SLAM system

Overview

HybVIO

A visual-inertial odometry system with an optional SLAM module.

This is a research-oriented codebase, which has been published for the purposes of verifiability and reproducibility of the results in the paper:

  • Otto Seiskari, Pekka Rantalankila, Juho Kannala, Jerry Ylilammi, Esa Rahtu, and Arno Solin (2022). HybVIO: Pushing the limits of real-time visual-inertial odometry. In IEEE Winter Conference on Applications of Computer Vision (WACV).
    [arXiv pre-print] | [video]

It can also serve as a baseline in VIO and VISLAM benchmarks. The code is not intended for production use and does not represent a particularly clean or simple way of implementing the methods described in the above paper. The code contains numerous feature flags and parameters (see codegen/parameter_definitions.c) that are not used in the HybVIO but may (or may not) be relevant in other scenarios and use cases.

HybVIO EuRoC

Setup

Here are basic instructions for setting up the project, there is some more detailed help included in the later sections (e.g., for Linux).

  • Install CMake, glfw and ffmpeg, e.g., by brew install cmake glfw ffmpeg.
  • Clone this repository with the --recursive option (this will take a while)
  • Build dependencies by running cd 3rdparty/mobile-cv-suite; ./scripts/build.sh
  • Make sure you are using clang to compile the C++ sources (it's the default on Macs). If not default, like on many Linux Distros, you can control this with environment variables, e.g., CC=clang CXX=clang++ ./scripts/build.sh
  • (optional) In order to be able to use the SLAM module, run ./slam/src/download_orb_vocab.sh

Then, to build the main and test binaries, perform the standard CMake routine:

mkdir target
cd target
cmake -DBUILD_VISUALIZATIONS=ON -DUSE_SLAM=ON ..
# or if not using clang by default:
# CC=clang CXX=clang++ cmake ..
make

Now the target folder should contain the binaries main and run-tests. After making changes to code, only run make. Tests can be run with the binary run-tests.

To compile faster, pass -j argument to make, or use a program like ccache. To run faster, check CMakeLists.txt for some options.

Arch Linux

List of packages needed: blas, cblas, clang, cmake, ffmpeg, glfw, gtk3, lapack, python-numpy, python-matplotlib.

Debian

On Debian Stretch, had to install (some might be optional): clang, libc++-dev, libgtk2.0-dev, libgstreamer1.0-dev, libvtk6-dev, libavresample-dev.

Raspberry Pi/Raspbian

On Raspbian (Pi 4, 8 GiB), had to install at least: libglfw3-dev and libglfw3 (for accelerated arrays) and libglew-dev and libxkbcommon-dev (for Pangolin, still had problems). Also started off with the Debian setup above.

Benchmarking

EuroC

To run benchmarks on EuroC dataset and reproduce numbers published in https://arxiv.org/abs/2106.11857, follow the instructions in https://github.com/AaltoML/vio_benchmark/tree/main/hybvio_runner.

If you want to test the software on individual EuRoC datasets, you can follow this subset of instructions

  1. In vio_benchmark root folder, run python convert/euroc_to_benchmark.py to download and convert to data
  2. Symlink that data here: mkdir -p data && cd data && ln -s /path/to/vio_benchmark/data/benchmark .

Then you can run inividual EuRoC sequences as, e.g.,

./main -i=../data/benchmark/euroc-v1-02-medium -p -useStereo

ADVIO

  1. Download the ADVIO dataset as instructed in https://github.com/AaltoVision/ADVIO#downloading-the-data and extract all the .zip files somewhere ("/path/to/advio").
  2. Run ./scripts/convert/advio_to_generic_benchmark.sh /path/to/advio
  3. Then you can run ADVIO sequences either using their full path (like in EuRoC) or using the -j shorthand, e.g., ./main -j=2 for ADVIO-02.

The main binary

To run the algorithm on recorded data, use ./main -i=path/to/datafolder, where datafolder/ must at the very least contain a data.{jsonl|csv} and data.{mp4|mov|avi}. Such recordings can be created with

Some common arguments to main are:

  • -p: show pose visualization.
  • -c: show video output.
  • -useSlam: Enable SLAM module.
  • -useStereo: Enable stereo.
  • -s: show 3d visualization. Requires -useSlam.
  • -gpu: Enable GPU acceleration

You can get full list of command line options with ./main -help.

Key controls

These keys can be used when any of the graphical windows are focused (see commandline/command_queue.cpp for full list).

  • A to pause and toggle step mode, where a key press (e.g., SPACE) processes the next frame.
  • Q or Escape to quit
  • R to rotate camera window
  • The horizontal number keys 1,2,… toggle methods drawn in the pose visualization.

When the command line is focused, Ctrl-C aborts the program.

Copyright

Licensed under GPLv3. For different (commercial) licensing options, contact us at https://www.spectacularai.com/

IA for recognising Traffic Signs using Keras [Tensorflow]

Traffic Signs Recognition ⚠️ 🚦 Fundamentals of Intelligent Systems Introduction 📄 Development of a neural network capable of recognizing nine differ

Sebastián Fernández García 2 Dec 19, 2022
Generate Contextual Directory Wordlist For Target Org

PathPermutor Generate Contextual Directory Wordlist For Target Org This script generates contextual wordlist for any target org based on the set of UR

8 Jun 23, 2021
[NeurIPS-2021] Slow Learning and Fast Inference: Efficient Graph Similarity Computation via Knowledge Distillation

Efficient Graph Similarity Computation - (EGSC) This repo contains the source code and dataset for our paper: Slow Learning and Fast Inference: Effici

24 Dec 31, 2022
git《Learning Pairwise Inter-Plane Relations for Piecewise Planar Reconstruction》(ECCV 2020) GitHub:

Learning Pairwise Inter-Plane Relations for Piecewise Planar Reconstruction Code for the ECCV 2020 paper by Yiming Qian and Yasutaka Furukawa Getting

37 Dec 04, 2022
Cross-media Structured Common Space for Multimedia Event Extraction (ACL2020)

Cross-media Structured Common Space for Multimedia Event Extraction Table of Contents Overview Requirements Data Quickstart Citation Overview The code

Manling Li 49 Nov 21, 2022
Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight)

Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight) Abstract Due to the limited and even imbalanced dat

Hanzhe Hu 99 Dec 12, 2022
MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

Deformable 3D Convolution for Video Super-Resolution Pytorch implementation of l

Xinyi Ying 28 Dec 15, 2022
PyTorch implementation of neural style transfer algorithm

neural-style-pt This is a PyTorch implementation of the paper A Neural Algorithm of Artistic Style by Leon A. Gatys, Alexander S. Ecker, and Matthias

770 Jan 02, 2023
Pytorch Implementation of Interaction Networks for Learning about Objects, Relations and Physics

Interaction-Network-Pytorch Pytorch Implementraion of Interaction Networks for Learning about Objects, Relations and Physics. Interaction Network is a

117 Nov 05, 2022
Predicting 10 different clothing types using Xception pre-trained model.

Predicting-Clothing-Types Predicting 10 different clothing types using Xception pre-trained model from Keras library. It is reimplemented version from

AbdAssalam Ahmad 3 Dec 29, 2021
PyTorch implementations of the paper: "Learning Independent Instance Maps for Crowd Localization"

IIM - Crowd Localization This repo is the official implementation of paper: Learning Independent Instance Maps for Crowd Localization. The code is dev

tao han 91 Nov 10, 2022
Shape-Adaptive Selection and Measurement for Oriented Object Detection

Source Code of AAAI22-2171 Introduction The source code includes training and inference procedures for the proposed method of the paper submitted to t

houliping 24 Nov 29, 2022
PyTorch implementation of residual gated graph ConvNets, ICLR’18

Residual Gated Graph ConvNets April 24, 2018 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbress

Xavier Bresson 112 Aug 10, 2022
Automatic 2D-to-3D Video Conversion with CNNs

Deep3D: Automatic 2D-to-3D Video Conversion with CNNs How To Run To run this code. Please install MXNet following the official document. Deep3D requir

Eric Junyuan Xie 1.2k Dec 30, 2022
Code for Estimating Multi-cause Treatment Effects via Single-cause Perturbation (NeurIPS 2021)

Estimating Multi-cause Treatment Effects via Single-cause Perturbation (NeurIPS 2021) Single-cause Perturbation (SCP) is a framework to estimate the m

Zhaozhi Qian 9 Sep 28, 2022
[ICML 2021] Towards Understanding and Mitigating Social Biases in Language Models

Towards Understanding and Mitigating Social Biases in Language Models This repo contains code and data for evaluating and mitigating bias from generat

Paul Liang 42 Jan 03, 2023
This repository contains the code for the paper in EMNLP 2021: "HRKD: Hierarchical Relational Knowledge Distillation for Cross-domain Language Model Compression".

HRKD: Hierarchical Relational Knowledge Distillation for Cross-domain Language Model Compression This repository contains the code for the paper in EM

Chenhe Dong 2 Mar 24, 2022
Planar Prior Assisted PatchMatch Multi-View Stereo

ACMP [News] The code for ACMH is released!!! [News] The code for ACMM is released!!! About This repository contains the code for the paper Planar Prio

Qingshan Xu 127 Dec 31, 2022
Builds a LoRa radio frequency fingerprint identification (RFFI) system based on deep learning techiniques

This project builds a LoRa radio frequency fingerprint identification (RFFI) system based on deep learning techiniques.

20 Dec 30, 2022
Code of paper "Compositionally Generalizable 3D Structure Prediction"

Compositionally Generalizable 3D Structure Prediction In this work, We bring in the concept of compositional generalizability and factorizes the 3D sh

Songfang Han 30 Dec 17, 2022