HybVIO visual-inertial odometry and SLAM system

Overview

HybVIO

A visual-inertial odometry system with an optional SLAM module.

This is a research-oriented codebase, which has been published for the purposes of verifiability and reproducibility of the results in the paper:

  • Otto Seiskari, Pekka Rantalankila, Juho Kannala, Jerry Ylilammi, Esa Rahtu, and Arno Solin (2022). HybVIO: Pushing the limits of real-time visual-inertial odometry. In IEEE Winter Conference on Applications of Computer Vision (WACV).
    [arXiv pre-print] | [video]

It can also serve as a baseline in VIO and VISLAM benchmarks. The code is not intended for production use and does not represent a particularly clean or simple way of implementing the methods described in the above paper. The code contains numerous feature flags and parameters (see codegen/parameter_definitions.c) that are not used in the HybVIO but may (or may not) be relevant in other scenarios and use cases.

HybVIO EuRoC

Setup

Here are basic instructions for setting up the project, there is some more detailed help included in the later sections (e.g., for Linux).

  • Install CMake, glfw and ffmpeg, e.g., by brew install cmake glfw ffmpeg.
  • Clone this repository with the --recursive option (this will take a while)
  • Build dependencies by running cd 3rdparty/mobile-cv-suite; ./scripts/build.sh
  • Make sure you are using clang to compile the C++ sources (it's the default on Macs). If not default, like on many Linux Distros, you can control this with environment variables, e.g., CC=clang CXX=clang++ ./scripts/build.sh
  • (optional) In order to be able to use the SLAM module, run ./slam/src/download_orb_vocab.sh

Then, to build the main and test binaries, perform the standard CMake routine:

mkdir target
cd target
cmake -DBUILD_VISUALIZATIONS=ON -DUSE_SLAM=ON ..
# or if not using clang by default:
# CC=clang CXX=clang++ cmake ..
make

Now the target folder should contain the binaries main and run-tests. After making changes to code, only run make. Tests can be run with the binary run-tests.

To compile faster, pass -j argument to make, or use a program like ccache. To run faster, check CMakeLists.txt for some options.

Arch Linux

List of packages needed: blas, cblas, clang, cmake, ffmpeg, glfw, gtk3, lapack, python-numpy, python-matplotlib.

Debian

On Debian Stretch, had to install (some might be optional): clang, libc++-dev, libgtk2.0-dev, libgstreamer1.0-dev, libvtk6-dev, libavresample-dev.

Raspberry Pi/Raspbian

On Raspbian (Pi 4, 8 GiB), had to install at least: libglfw3-dev and libglfw3 (for accelerated arrays) and libglew-dev and libxkbcommon-dev (for Pangolin, still had problems). Also started off with the Debian setup above.

Benchmarking

EuroC

To run benchmarks on EuroC dataset and reproduce numbers published in https://arxiv.org/abs/2106.11857, follow the instructions in https://github.com/AaltoML/vio_benchmark/tree/main/hybvio_runner.

If you want to test the software on individual EuRoC datasets, you can follow this subset of instructions

  1. In vio_benchmark root folder, run python convert/euroc_to_benchmark.py to download and convert to data
  2. Symlink that data here: mkdir -p data && cd data && ln -s /path/to/vio_benchmark/data/benchmark .

Then you can run inividual EuRoC sequences as, e.g.,

./main -i=../data/benchmark/euroc-v1-02-medium -p -useStereo

ADVIO

  1. Download the ADVIO dataset as instructed in https://github.com/AaltoVision/ADVIO#downloading-the-data and extract all the .zip files somewhere ("/path/to/advio").
  2. Run ./scripts/convert/advio_to_generic_benchmark.sh /path/to/advio
  3. Then you can run ADVIO sequences either using their full path (like in EuRoC) or using the -j shorthand, e.g., ./main -j=2 for ADVIO-02.

The main binary

To run the algorithm on recorded data, use ./main -i=path/to/datafolder, where datafolder/ must at the very least contain a data.{jsonl|csv} and data.{mp4|mov|avi}. Such recordings can be created with

Some common arguments to main are:

  • -p: show pose visualization.
  • -c: show video output.
  • -useSlam: Enable SLAM module.
  • -useStereo: Enable stereo.
  • -s: show 3d visualization. Requires -useSlam.
  • -gpu: Enable GPU acceleration

You can get full list of command line options with ./main -help.

Key controls

These keys can be used when any of the graphical windows are focused (see commandline/command_queue.cpp for full list).

  • A to pause and toggle step mode, where a key press (e.g., SPACE) processes the next frame.
  • Q or Escape to quit
  • R to rotate camera window
  • The horizontal number keys 1,2,… toggle methods drawn in the pose visualization.

When the command line is focused, Ctrl-C aborts the program.

Copyright

Licensed under GPLv3. For different (commercial) licensing options, contact us at https://www.spectacularai.com/

Reviving Iterative Training with Mask Guidance for Interactive Segmentation

This repository provides the source code for training and testing state-of-the-art click-based interactive segmentation models with the official PyTorch implementation

Visual Understanding Lab @ Samsung AI Center Moscow 406 Jan 01, 2023
HDMapNet: A Local Semantic Map Learning and Evaluation Framework

HDMapNet_devkit Devkit for HDMapNet. HDMapNet: A Local Semantic Map Learning and Evaluation Framework Qi Li, Yue Wang, Yilun Wang, Hang Zhao [Paper] [

Tsinghua MARS Lab 421 Jan 04, 2023
A PyTorch implementation of EventProp [https://arxiv.org/abs/2009.08378], a method to train Spiking Neural Networks

Spiking Neural Network training with EventProp This is an unofficial PyTorch implemenation of EventProp, a method to compute exact gradients for Spiki

Pedro Savarese 35 Jul 29, 2022
A state of the art of new lightweight YOLO model implemented by TensorFlow 2.

CSL-YOLO: A New Lightweight Object Detection System for Edge Computing This project provides a SOTA level lightweight YOLO called "Cross-Stage Lightwe

Miles Zhang 54 Dec 21, 2022
Codebase for Time-series Generative Adversarial Networks (TimeGAN)

Codebase for Time-series Generative Adversarial Networks (TimeGAN)

Jinsung Yoon 532 Dec 31, 2022
ML models implementation practice

Let's implement various ML algorithms with numpy/tf Vanilla Neural Network https://towardsdatascience.com/lets-code-a-neural-network-in-plain-numpy-ae

Jinsoo Heo 4 Jul 04, 2021
Public repository of the 3DV 2021 paper "Generative Zero-Shot Learning for Semantic Segmentation of 3D Point Clouds"

Generative Zero-Shot Learning for Semantic Segmentation of 3D Point Clouds Björn Michele1), Alexandre Boulch1), Gilles Puy1), Maxime Bucher1) and Rena

valeo.ai 15 Dec 22, 2022
Implementing Vision Transformer (ViT) in PyTorch

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

2 Dec 24, 2021
MATLAB codes of the book "Digital Image Processing Fourth Edition" converted to Python

Digital Image Processing Python MATLAB codes of the book "Digital Image Processing Fourth Edition" converted to Python TO-DO: Refactor scripts, curren

Merve Noyan 24 Oct 16, 2022
A flag generation AI created using DeepAIs API

Vex AI or Vexiology AI is an Artifical Intelligence created to generate custom made flag design texts. It uses DeepAIs API. Please be aware that you must include your own DeepAI API key. See instruct

Bernie 10 Apr 06, 2022
PyTorch Implementation for Fracture Detection in Wrist Bone X-ray Images

wrist-d PyTorch Implementation for Fracture Detection in Wrist Bone X-ray Images note: Paper: Under Review at MPDI Diagnostics Submission Date: Novemb

Fatih UYSAL 5 Oct 12, 2022
gACSON software for visualization, processing and analysis of three-dimensional electron microscopy images

gACSON gACSON software is to visualize, segment, and analyze the morphology of neurons in three-dimensional electron microscopy images. If you use any

Andrea Behanova 2 May 31, 2022
Code of Classification Saliency-Based Rule for Visible and Infrared Image Fusion

CSF Code of Classification Saliency-Based Rule for Visible and Infrared Image Fusion Tips: For testing: CUDA_VISIBLE_DEVICES=0 python main.py For trai

Han Xu 14 Oct 31, 2022
Simple tools for logging and visualizing, loading and training

TNT TNT is a library providing powerful dataloading, logging and visualization utilities for Python. It is closely integrated with PyTorch and is desi

1.5k Jan 02, 2023
PyTorch implementation of the Quasi-Recurrent Neural Network - up to 16 times faster than NVIDIA's cuDNN LSTM

Quasi-Recurrent Neural Network (QRNN) for PyTorch Updated to support multi-GPU environments via DataParallel - see the the multigpu_dataparallel.py ex

Salesforce 1.3k Dec 28, 2022
Official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Recognition" in AAAI2022.

AimCLR This is an official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Reco

Gty 44 Dec 17, 2022
This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order Pooling.

Locus This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order

Robotics and Autonomous Systems Group 96 Dec 15, 2022
Deep Reinforcement Learning for mobile robot navigation in ROS Gazebo simulator

DRL-robot-navigation Deep Reinforcement Learning for mobile robot navigation in ROS Gazebo simulator. Using Twin Delayed Deep Deterministic Policy Gra

87 Jan 07, 2023
A Python package for causal inference using Synthetic Controls

Synthetic Control Methods A Python package for causal inference using synthetic controls This Python package implements a class of approaches to estim

Oscar Engelbrektson 107 Dec 28, 2022
Official Implementation of HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation

HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation by Lukas Hoyer, Dengxin Dai, and Luc Van Gool [Arxiv] [Paper] Overview Unsup

Lukas Hoyer 149 Dec 28, 2022