Asymmetric metric learning for knowledge transfer

Related tags

Deep Learningaml
Overview

Asymmetric metric learning

This is the official code that enables the reproduction of the results from our paper:

Asymmetric metric learning for knowledge transfer, Budnik M., Avrithis Y. [arXiv]

Content

This repository provides the means to train and test all the models presented in the paper. This includes:

  1. Code to train the models with and without the teacher (asymmetric and symmetric).
  2. Code to do symmetric and asymmetric testing on rOxford and rParis datasets.
  3. Best pre-trainend models (including whitening).

Dependencies

  1. Python3 (tested on version 3.6)
  2. Numpy 1.19
  3. PyTorch (tested on version 1.4.0)
  4. Datasets and base models will be downloaded automatically.

Training and testing the networks

To train a model use the following script:

python main.py [-h] [--training-dataset DATASET] [--directory EXPORT_DIR] [--no-val]
                  [--test-datasets DATASETS] [--test-whiten DATASET]
                  [--val-freq N] [--save-freq N] [--arch ARCH] [--pool POOL]
                  [--local-whitening] [--regional] [--whitening]
                  [--not-pretrained] [--loss LOSS] [--loss-margin LM] 
                  [--mode MODE] [--teacher TEACHER] [--sym]
                  [--feat-path FEAT] [--feat-val-path FEATVAL]
                  [--image-size N] [--neg-num N] [--query-size N]
                  [--pool-size N] [--gpu-id N] [--workers N] [--epochs N]
                  [--batch-size N] [--optimizer OPTIMIZER] [--lr LR]
                  [--momentum M] [--weight-decay W] [--print-freq N]
                  [--resume FILENAME] [--comment COMMENT] 
                  

Most parameters are the same as in CNN Image Retrieval in PyTorch. Here, we describe parameters added or modified in this work, namely:
--arch - architecture of the model to be trained, in our case the student.
--mode - is the training mode, which determines how the dataset is handled, e.g. are the tuples constructed randomly or with mining; which examples are coming from the teacher vs student, etc. So for example while the --loss is set to 'contrastive', 'ts' enables standard student-teacher training (includes mining), 'ts_self' trains using the Contr+ approach, 'reg' uses the regression. When using 'rand' or 'reg' no mining is used. With 'std' it follows the original training protocol from here (the teacher model is not used).
--teacher - the model of the teacher(vgg16 or resnet101), note that this param makes the last layer of the student match that of the teacher. Therefore, this can be used even in a standard symmetric training.
--sym - a flag that indicates if the training should be symmetric or asymmetric.
--feat-path and --feat-val-path - a path to the extracted teacher features used to train the student. The features can be extracted using the extract_features.py script.

To perform a symmetric test of the model that is already trained:

python test.py [-h] (--network-path NETWORK | --network-offtheshelf NETWORK)
               [--datasets DATASETS] [--image-size N] [--multiscale MULTISCALE] 
               [--whitening WHITENING] [--teacher TEACHER]

For the asymmetric testing:

python test.py [-h] (--network-path NETWORK | --network-offtheshelf NETWORK)
               [--datasets DATASETS] [--image-size N] [--multiscale MULTISCALE] 
               [--whitening WHITENING] [--teacher TEACHER] [--asym]

Examples:

Perform a symmetric test with a pre-trained model:

python test.py -npath  mobilenet-v2-gem-contr-vgg16 -d 'roxford5k,rparis6k' -ms '[1, 1/2**(1/2), 1/2]' -w retrieval-SfM-120k --teacher vgg16

For an asymmetric test:

python test.py -npath  mobilenet-v2-gem-contr-vgg16 -d 'roxford5k,rparis6k' -ms '[1, 1/2**(1/2), 1/2]' -w retrieval-SfM-120k --teacher vgg16 --asym

If you are interested in just the trained models, you can find the links to them in the test.py file.

Acknowledgements

This code is adapted and modified based on the amazing repository by F. Radenović called CNN Image Retrieval in PyTorch: Training and evaluating CNNs for Image Retrieval in PyTorch

Multitask Learning Strengthens Adversarial Robustness

Multitask Learning Strengthens Adversarial Robustness

Columbia University 15 Jun 10, 2022
THIS IS THE **OLD** PYMC PROJECT. PLEASE USE PYMC3 INSTEAD:

Introduction Version: 2.3.8 Authors: Chris Fonnesbeck Anand Patil David Huard John Salvatier Web site: https://github.com/pymc-devs/pymc Documentation

PyMC 7.2k Jan 07, 2023
This is the implementation of the paper "Self-supervised Outdoor Scene Relighting"

Self-supervised Outdoor Scene Relighting This is the implementation of the paper "Self-supervised Outdoor Scene Relighting". The model is implemented

Ye Yu 24 Dec 17, 2022
Boostcamp CV Serving For Python

Boostcamp-CV-Serving Prerequisites MySQL GCP Cloud Storage GCP key file Sentry Streamlit Cloud Secrets: .streamlit/secrets.toml #DO NOT SHARE THIS I

Jungwon Seo 19 Feb 22, 2022
Must-read Papers on Physics-Informed Neural Networks.

PINNpapers Contributed by IDRL lab. Introduction Physics-Informed Neural Network (PINN) has achieved great success in scientific computing since 2017.

IDRL 330 Jan 07, 2023
🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥

face.evoLVe: High-Performance Face Recognition Library based on PaddlePaddle & PyTorch Evolve to be more comprehensive, effective and efficient for fa

Zhao Jian 3.1k Jan 02, 2023
MicroNet: Improving Image Recognition with Extremely Low FLOPs (ICCV 2021)

MicroNet: Improving Image Recognition with Extremely Low FLOPs (ICCV 2021) A pytorch implementation of MicroNet. If you use this code in your research

Yunsheng Li 293 Dec 28, 2022
Knowledge Management for Humans using Machine Learning & Tags

HyperTag HyperTag helps humans intuitively express how they think about their files using tags and machine learning.

Ravn Tech, Inc. 165 Nov 04, 2022
An implementation of Equivariant e2 convolutional kernals into a convolutional self attention network, applied to radio astronomy data.

EquivariantSelfAttention An implementation of Equivariant e2 convolutional kernals into a convolutional self attention network, applied to radio astro

2 Nov 09, 2021
True per-item rarity for Loot

True-Rarity True per-item rarity for Loot (For Adventurers) and More Loot A.K.A mLoot each out/true_rarity_{item_type}.json file contains probabilitie

Dan R. 3 Jul 26, 2022
Top #1 Submission code for the first https://alphamev.ai MEV competition with best AUC (0.9893) and MSE (0.0982).

alphamev-winning-submission Top #1 Submission code for the first alphamev MEV competition with best AUC (0.9893) and MSE (0.0982). The code won't run

70 Oct 29, 2022
Codes for the compilation and visualization examples to the HIF vegetation dataset

High-impedance vegetation fault dataset This repository contains the codes that compile the "Vegetation Conduction Ignition Test Report" data, which a

1 Dec 12, 2021
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

536 Dec 20, 2022
Code for the paper "Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds" (ICCV 2021)

Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds This is the official code implementation for the paper "Spatio-temporal Se

Hesper 63 Jan 05, 2023
MediaPipe is a an open-source framework from Google for building multimodal

MediaPipe is a an open-source framework from Google for building multimodal (eg. video, audio, any time series data), cross platform (i.e Android, iOS, web, edge devices) applied ML pipelines. It is

Bhavishya Pandit 3 Sep 30, 2022
Implementation of Memformer, a Memory-augmented Transformer, in Pytorch

Memformer - Pytorch Implementation of Memformer, a Memory-augmented Transformer, in Pytorch. It includes memory slots, which are updated with attentio

Phil Wang 60 Nov 06, 2022
An original implementation of "Noisy Channel Language Model Prompting for Few-Shot Text Classification"

Channel LM Prompting (and beyond) This includes an original implementation of Sewon Min, Mike Lewis, Hannaneh Hajishirzi, Luke Zettlemoyer. "Noisy Cha

Sewon Min 92 Jan 07, 2023
Direct Multi-view Multi-person 3D Human Pose Estimation

Implementation of NeurIPS-2021 paper: Direct Multi-view Multi-person 3D Human Pose Estimation [paper] [video-YouTube, video-Bilibili] [slides] This is

Sea AI Lab 251 Dec 30, 2022
Implementation of a Transformer that Ponders, using the scheme from the PonderNet paper

Ponder(ing) Transformer Implementation of a Transformer that learns to adapt the number of computational steps it takes depending on the difficulty of

Phil Wang 65 Oct 04, 2022
EssentialMC2 Video Understanding

EssentialMC2 Introduction EssentialMC2 is a complete system to solve video understanding tasks including MHRL(representation learning), MECR2( relatio

Alibaba 106 Dec 11, 2022