Asymmetric metric learning for knowledge transfer

Related tags

Deep Learningaml
Overview

Asymmetric metric learning

This is the official code that enables the reproduction of the results from our paper:

Asymmetric metric learning for knowledge transfer, Budnik M., Avrithis Y. [arXiv]

Content

This repository provides the means to train and test all the models presented in the paper. This includes:

  1. Code to train the models with and without the teacher (asymmetric and symmetric).
  2. Code to do symmetric and asymmetric testing on rOxford and rParis datasets.
  3. Best pre-trainend models (including whitening).

Dependencies

  1. Python3 (tested on version 3.6)
  2. Numpy 1.19
  3. PyTorch (tested on version 1.4.0)
  4. Datasets and base models will be downloaded automatically.

Training and testing the networks

To train a model use the following script:

python main.py [-h] [--training-dataset DATASET] [--directory EXPORT_DIR] [--no-val]
                  [--test-datasets DATASETS] [--test-whiten DATASET]
                  [--val-freq N] [--save-freq N] [--arch ARCH] [--pool POOL]
                  [--local-whitening] [--regional] [--whitening]
                  [--not-pretrained] [--loss LOSS] [--loss-margin LM] 
                  [--mode MODE] [--teacher TEACHER] [--sym]
                  [--feat-path FEAT] [--feat-val-path FEATVAL]
                  [--image-size N] [--neg-num N] [--query-size N]
                  [--pool-size N] [--gpu-id N] [--workers N] [--epochs N]
                  [--batch-size N] [--optimizer OPTIMIZER] [--lr LR]
                  [--momentum M] [--weight-decay W] [--print-freq N]
                  [--resume FILENAME] [--comment COMMENT] 
                  

Most parameters are the same as in CNN Image Retrieval in PyTorch. Here, we describe parameters added or modified in this work, namely:
--arch - architecture of the model to be trained, in our case the student.
--mode - is the training mode, which determines how the dataset is handled, e.g. are the tuples constructed randomly or with mining; which examples are coming from the teacher vs student, etc. So for example while the --loss is set to 'contrastive', 'ts' enables standard student-teacher training (includes mining), 'ts_self' trains using the Contr+ approach, 'reg' uses the regression. When using 'rand' or 'reg' no mining is used. With 'std' it follows the original training protocol from here (the teacher model is not used).
--teacher - the model of the teacher(vgg16 or resnet101), note that this param makes the last layer of the student match that of the teacher. Therefore, this can be used even in a standard symmetric training.
--sym - a flag that indicates if the training should be symmetric or asymmetric.
--feat-path and --feat-val-path - a path to the extracted teacher features used to train the student. The features can be extracted using the extract_features.py script.

To perform a symmetric test of the model that is already trained:

python test.py [-h] (--network-path NETWORK | --network-offtheshelf NETWORK)
               [--datasets DATASETS] [--image-size N] [--multiscale MULTISCALE] 
               [--whitening WHITENING] [--teacher TEACHER]

For the asymmetric testing:

python test.py [-h] (--network-path NETWORK | --network-offtheshelf NETWORK)
               [--datasets DATASETS] [--image-size N] [--multiscale MULTISCALE] 
               [--whitening WHITENING] [--teacher TEACHER] [--asym]

Examples:

Perform a symmetric test with a pre-trained model:

python test.py -npath  mobilenet-v2-gem-contr-vgg16 -d 'roxford5k,rparis6k' -ms '[1, 1/2**(1/2), 1/2]' -w retrieval-SfM-120k --teacher vgg16

For an asymmetric test:

python test.py -npath  mobilenet-v2-gem-contr-vgg16 -d 'roxford5k,rparis6k' -ms '[1, 1/2**(1/2), 1/2]' -w retrieval-SfM-120k --teacher vgg16 --asym

If you are interested in just the trained models, you can find the links to them in the test.py file.

Acknowledgements

This code is adapted and modified based on the amazing repository by F. Radenović called CNN Image Retrieval in PyTorch: Training and evaluating CNNs for Image Retrieval in PyTorch

Python with OpenCV - MediaPip Framework Hand Detection

Python HandDetection Python with OpenCV - MediaPip Framework Hand Detection Explore the docs » Contact Me About The Project It is a Computer vision pa

2 Jan 07, 2022
This is the official pytorch implementation of AutoDebias, an automatic debiasing method for recommendation.

AutoDebias This is the official pytorch implementation of AutoDebias, a debiasing method for recommendation system. AutoDebias is proposed in the pape

Dong Hande 77 Nov 25, 2022
Rendering Point Clouds with Compute Shaders

Compute Shader Based Point Cloud Rendering This repository contains the source code to our techreport: Rendering Point Clouds with Compute Shaders and

Markus Schütz 460 Jan 05, 2023
CLASP - Contrastive Language-Aminoacid Sequence Pretraining

CLASP - Contrastive Language-Aminoacid Sequence Pretraining Repository for creating models pretrained on language and aminoacid sequences similar to C

Michael Pieler 133 Dec 29, 2022
Learning What and Where to Draw

###Learning What and Where to Draw Scott Reed, Zeynep Akata, Santosh Mohan, Samuel Tenka, Bernt Schiele, Honglak Lee This is the code for our NIPS 201

Scott Ellison Reed 337 Nov 18, 2022
This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order Pooling.

Locus This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order

Robotics and Autonomous Systems Group 96 Dec 15, 2022
Self Governing Neural Networks (SGNN): the Projection Layer

Self Governing Neural Networks (SGNN): the Projection Layer A SGNN's word projections preprocessing pipeline in scikit-learn In this notebook, we'll u

Guillaume Chevalier 22 Nov 06, 2022
The official repo of the CVPR 2021 paper Group Collaborative Learning for Co-Salient Object Detection .

GCoNet The official repo of the CVPR 2021 paper Group Collaborative Learning for Co-Salient Object Detection . Trained model Download final_gconet.pth

Qi Fan 46 Nov 17, 2022
Implementation of ConvMixer in TensorFlow and Keras

ConvMixer ConvMixer, an extremely simple model that is similar in spirit to the ViT and the even-more-basic MLP-Mixer in that it operates directly on

Sayan Nath 8 Oct 03, 2022
A Pose Estimator for Dense Reconstruction with the Structured Light Illumination Sensor

Phase-SLAM A Pose Estimator for Dense Reconstruction with the Structured Light Illumination Sensor This open source is written by MATLAB Run Mode Open

Xi Zheng 14 Dec 19, 2022
PyTorch implementation for Score-Based Generative Modeling through Stochastic Differential Equations (ICLR 2021, Oral)

Score-Based Generative Modeling through Stochastic Differential Equations This repo contains a PyTorch implementation for the paper Score-Based Genera

Yang Song 757 Jan 04, 2023
Official implementation of "Watermarking Images in Self-Supervised Latent-Spaces"

🔍 Watermarking Images in Self-Supervised Latent-Spaces PyTorch implementation and pretrained models for the paper. For details, see Watermarking Imag

Meta Research 32 Dec 13, 2022
Reinforcement Learning via Supervised Learning

Reinforcement Learning via Supervised Learning Installation Run pip install -e . in an environment with Python = 3.7.0, 3.9. The code depends on MuJ

Scott Emmons 49 Nov 28, 2022
SingleVC performs any-to-one VC, which is an important component of MediumVC project.

SingleVC performs any-to-one VC, which is an important component of MediumVC project. Here is the official implementation of the paper, MediumVC.

谷下雨 26 Dec 28, 2022
Implementation of the 😇 Attention layer from the paper, Scaling Local Self-Attention For Parameter Efficient Visual Backbones

HaloNet - Pytorch Implementation of the Attention layer from the paper, Scaling Local Self-Attention For Parameter Efficient Visual Backbones. This re

Phil Wang 189 Nov 22, 2022
Mscp jamf - Build compliance in jamf

mscp_jamf Build compliance in Jamf. This will build the following xml pieces to

Bob Gendler 3 Jul 25, 2022
Breaking the Dilemma of Medical Image-to-image Translation

Breaking the Dilemma of Medical Image-to-image Translation Supervised Pix2Pix and unsupervised Cycle-consistency are two modes that dominate the field

Kid Liet 86 Dec 21, 2022
This repository contains pre-trained models and some evaluation code for our paper Towards Unsupervised Dense Information Retrieval with Contrastive Learning

Contriever: Towards Unsupervised Dense Information Retrieval with Contrastive Learning This repository contains pre-trained models and some evaluation

Meta Research 207 Jan 08, 2023
Omnidirectional camera calibration in python

Omnidirectional Camera Calibration Key features pure python initial solution based on A Toolbox for Easily Calibrating Omnidirectional Cameras (Davide

Thomas Pönitz 12 Nov 22, 2022
Optimus: the first large-scale pre-trained VAE language model

Optimus: the first pre-trained Big VAE language model This repository contains source code necessary to reproduce the results presented in the EMNLP 2

314 Dec 19, 2022