Asymmetric metric learning for knowledge transfer

Related tags

Deep Learningaml
Overview

Asymmetric metric learning

This is the official code that enables the reproduction of the results from our paper:

Asymmetric metric learning for knowledge transfer, Budnik M., Avrithis Y. [arXiv]

Content

This repository provides the means to train and test all the models presented in the paper. This includes:

  1. Code to train the models with and without the teacher (asymmetric and symmetric).
  2. Code to do symmetric and asymmetric testing on rOxford and rParis datasets.
  3. Best pre-trainend models (including whitening).

Dependencies

  1. Python3 (tested on version 3.6)
  2. Numpy 1.19
  3. PyTorch (tested on version 1.4.0)
  4. Datasets and base models will be downloaded automatically.

Training and testing the networks

To train a model use the following script:

python main.py [-h] [--training-dataset DATASET] [--directory EXPORT_DIR] [--no-val]
                  [--test-datasets DATASETS] [--test-whiten DATASET]
                  [--val-freq N] [--save-freq N] [--arch ARCH] [--pool POOL]
                  [--local-whitening] [--regional] [--whitening]
                  [--not-pretrained] [--loss LOSS] [--loss-margin LM] 
                  [--mode MODE] [--teacher TEACHER] [--sym]
                  [--feat-path FEAT] [--feat-val-path FEATVAL]
                  [--image-size N] [--neg-num N] [--query-size N]
                  [--pool-size N] [--gpu-id N] [--workers N] [--epochs N]
                  [--batch-size N] [--optimizer OPTIMIZER] [--lr LR]
                  [--momentum M] [--weight-decay W] [--print-freq N]
                  [--resume FILENAME] [--comment COMMENT] 
                  

Most parameters are the same as in CNN Image Retrieval in PyTorch. Here, we describe parameters added or modified in this work, namely:
--arch - architecture of the model to be trained, in our case the student.
--mode - is the training mode, which determines how the dataset is handled, e.g. are the tuples constructed randomly or with mining; which examples are coming from the teacher vs student, etc. So for example while the --loss is set to 'contrastive', 'ts' enables standard student-teacher training (includes mining), 'ts_self' trains using the Contr+ approach, 'reg' uses the regression. When using 'rand' or 'reg' no mining is used. With 'std' it follows the original training protocol from here (the teacher model is not used).
--teacher - the model of the teacher(vgg16 or resnet101), note that this param makes the last layer of the student match that of the teacher. Therefore, this can be used even in a standard symmetric training.
--sym - a flag that indicates if the training should be symmetric or asymmetric.
--feat-path and --feat-val-path - a path to the extracted teacher features used to train the student. The features can be extracted using the extract_features.py script.

To perform a symmetric test of the model that is already trained:

python test.py [-h] (--network-path NETWORK | --network-offtheshelf NETWORK)
               [--datasets DATASETS] [--image-size N] [--multiscale MULTISCALE] 
               [--whitening WHITENING] [--teacher TEACHER]

For the asymmetric testing:

python test.py [-h] (--network-path NETWORK | --network-offtheshelf NETWORK)
               [--datasets DATASETS] [--image-size N] [--multiscale MULTISCALE] 
               [--whitening WHITENING] [--teacher TEACHER] [--asym]

Examples:

Perform a symmetric test with a pre-trained model:

python test.py -npath  mobilenet-v2-gem-contr-vgg16 -d 'roxford5k,rparis6k' -ms '[1, 1/2**(1/2), 1/2]' -w retrieval-SfM-120k --teacher vgg16

For an asymmetric test:

python test.py -npath  mobilenet-v2-gem-contr-vgg16 -d 'roxford5k,rparis6k' -ms '[1, 1/2**(1/2), 1/2]' -w retrieval-SfM-120k --teacher vgg16 --asym

If you are interested in just the trained models, you can find the links to them in the test.py file.

Acknowledgements

This code is adapted and modified based on the amazing repository by F. Radenović called CNN Image Retrieval in PyTorch: Training and evaluating CNNs for Image Retrieval in PyTorch

Episodic-memory - Ego4D Episodic Memory Benchmark

Ego4D Episodic Memory Benchmark EGO4D is the world's largest egocentric (first p

3 Feb 18, 2022
POPPY (Physical Optics Propagation in Python) is a Python package that simulates physical optical propagation including diffraction

POPPY: Physical Optics Propagation in Python POPPY (Physical Optics Propagation in Python) is a Python package that simulates physical optical propaga

Space Telescope Science Institute 132 Dec 15, 2022
Using deep actor-critic model to learn best strategies in pair trading

Deep-Reinforcement-Learning-in-Stock-Trading Using deep actor-critic model to learn best strategies in pair trading Abstract Partially observed Markov

281 Dec 09, 2022
Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt)

Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt) Task Training huge unsupervised deep neural networks yields to strong progress in

Oliver Hahn 1 Jan 26, 2022
PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud, CVPR 2019.

PointRCNN PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud Code release for the paper PointRCNN:3D Object Proposal Generation a

Shaoshuai Shi 1.5k Dec 27, 2022
YouRefIt: Embodied Reference Understanding with Language and Gesture

YouRefIt: Embodied Reference Understanding with Language and Gesture YouRefIt: Embodied Reference Understanding with Language and Gesture by Yixin Che

16 Jul 11, 2022
T-LOAM: Truncated Least Squares Lidar-only Odometry and Mapping in Real-Time

T-LOAM: Truncated Least Squares Lidar-only Odometry and Mapping in Real-Time The first Lidar-only odometry framework with high performance based on tr

Pengwei Zhou 183 Dec 01, 2022
Cancer metastasis detection with neural conditional random field (NCRF)

NCRF Prerequisites Data Whole slide images Annotations Patch images Model Training Testing Tissue mask Probability map Tumor localization FROC evaluat

Baidu Research 731 Jan 01, 2023
Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow.

Generative Models Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow. Also present here are RBM and Helmholtz Machine. Note: Gen

Agustinus Kristiadi 7k Jan 02, 2023
This is the code related to "Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation" (ICCV 2021).

Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation This is the code relat

39 Sep 23, 2022
Official repository of IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSUMPTION.

IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSUMPTION This is the official repository of IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSU

电线杆 14 Dec 15, 2022
Dense Prediction Transformers

Vision Transformers for Dense Prediction This repository contains code and models for our paper: Vision Transformers for Dense Prediction René Ranftl,

Intelligent Systems Lab Org 1.3k Jan 02, 2023
Auto grind btdb2 exp for tower

Bloons TD Battles 2 EXP Grinder Auto grind btdb2 exp for towers Setup I suggest checking out every screenshot to see what they are supposed to be, so

Vincent 6 Jul 29, 2022
C3DPO - Canonical 3D Pose Networks for Non-rigid Structure From Motion.

C3DPO: Canonical 3D Pose Networks for Non-Rigid Structure From Motion By: David Novotny, Nikhila Ravi, Benjamin Graham, Natalia Neverova, Andrea Vedal

Meta Research 309 Dec 16, 2022
A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019).

ClusterGCN ⠀⠀ A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019). A

Benedek Rozemberczki 697 Dec 27, 2022
PyTorch implementations of the beta divergence loss.

Beta Divergence Loss - PyTorch Implementation This repository contains code for a PyTorch implementation of the beta divergence loss. Dependencies Thi

Billy Carson 7 Nov 09, 2022
JstDoS - HTTP Protocol Stack Remote Code Execution Vulnerability

jstDoS If you are going to skid that, please give credits ! ^^ ¿How works? This

apolo 4 Feb 11, 2022
Serving PyTorch 1.0 Models as a Web Server in C++

Serving PyTorch Models in C++ This repository contains various examples to perform inference using PyTorch C++ API. Run git clone https://github.com/W

Onur Kaplan 223 Jan 04, 2023
Build Low Code Automated Tensorflow, What-IF explainable models in just 3 lines of code.

Build Low Code Automated Tensorflow explainable models in just 3 lines of code.

Hasan Rafiq 170 Dec 26, 2022