Asymmetric metric learning for knowledge transfer

Related tags

Deep Learningaml
Overview

Asymmetric metric learning

This is the official code that enables the reproduction of the results from our paper:

Asymmetric metric learning for knowledge transfer, Budnik M., Avrithis Y. [arXiv]

Content

This repository provides the means to train and test all the models presented in the paper. This includes:

  1. Code to train the models with and without the teacher (asymmetric and symmetric).
  2. Code to do symmetric and asymmetric testing on rOxford and rParis datasets.
  3. Best pre-trainend models (including whitening).

Dependencies

  1. Python3 (tested on version 3.6)
  2. Numpy 1.19
  3. PyTorch (tested on version 1.4.0)
  4. Datasets and base models will be downloaded automatically.

Training and testing the networks

To train a model use the following script:

python main.py [-h] [--training-dataset DATASET] [--directory EXPORT_DIR] [--no-val]
                  [--test-datasets DATASETS] [--test-whiten DATASET]
                  [--val-freq N] [--save-freq N] [--arch ARCH] [--pool POOL]
                  [--local-whitening] [--regional] [--whitening]
                  [--not-pretrained] [--loss LOSS] [--loss-margin LM] 
                  [--mode MODE] [--teacher TEACHER] [--sym]
                  [--feat-path FEAT] [--feat-val-path FEATVAL]
                  [--image-size N] [--neg-num N] [--query-size N]
                  [--pool-size N] [--gpu-id N] [--workers N] [--epochs N]
                  [--batch-size N] [--optimizer OPTIMIZER] [--lr LR]
                  [--momentum M] [--weight-decay W] [--print-freq N]
                  [--resume FILENAME] [--comment COMMENT] 
                  

Most parameters are the same as in CNN Image Retrieval in PyTorch. Here, we describe parameters added or modified in this work, namely:
--arch - architecture of the model to be trained, in our case the student.
--mode - is the training mode, which determines how the dataset is handled, e.g. are the tuples constructed randomly or with mining; which examples are coming from the teacher vs student, etc. So for example while the --loss is set to 'contrastive', 'ts' enables standard student-teacher training (includes mining), 'ts_self' trains using the Contr+ approach, 'reg' uses the regression. When using 'rand' or 'reg' no mining is used. With 'std' it follows the original training protocol from here (the teacher model is not used).
--teacher - the model of the teacher(vgg16 or resnet101), note that this param makes the last layer of the student match that of the teacher. Therefore, this can be used even in a standard symmetric training.
--sym - a flag that indicates if the training should be symmetric or asymmetric.
--feat-path and --feat-val-path - a path to the extracted teacher features used to train the student. The features can be extracted using the extract_features.py script.

To perform a symmetric test of the model that is already trained:

python test.py [-h] (--network-path NETWORK | --network-offtheshelf NETWORK)
               [--datasets DATASETS] [--image-size N] [--multiscale MULTISCALE] 
               [--whitening WHITENING] [--teacher TEACHER]

For the asymmetric testing:

python test.py [-h] (--network-path NETWORK | --network-offtheshelf NETWORK)
               [--datasets DATASETS] [--image-size N] [--multiscale MULTISCALE] 
               [--whitening WHITENING] [--teacher TEACHER] [--asym]

Examples:

Perform a symmetric test with a pre-trained model:

python test.py -npath  mobilenet-v2-gem-contr-vgg16 -d 'roxford5k,rparis6k' -ms '[1, 1/2**(1/2), 1/2]' -w retrieval-SfM-120k --teacher vgg16

For an asymmetric test:

python test.py -npath  mobilenet-v2-gem-contr-vgg16 -d 'roxford5k,rparis6k' -ms '[1, 1/2**(1/2), 1/2]' -w retrieval-SfM-120k --teacher vgg16 --asym

If you are interested in just the trained models, you can find the links to them in the test.py file.

Acknowledgements

This code is adapted and modified based on the amazing repository by F. Radenović called CNN Image Retrieval in PyTorch: Training and evaluating CNNs for Image Retrieval in PyTorch

This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?".

Patches Are All You Need? 🤷 This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?". Code ov

ICLR 2022 Author 934 Dec 30, 2022
Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains

Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains This is an accompanying repository to the ICAIL 2021 pap

4 Dec 16, 2021
Notspot robot simulation - Python version

Notspot robot simulation - Python version This repository contains all the files and code needed to simulate the notspot quadrupedal robot using Gazeb

50 Sep 26, 2022
Code for BMVC2021 "MOS: A Low Latency and Lightweight Framework for Face Detection, Landmark Localization, and Head Pose Estimation"

MOS-Multi-Task-Face-Detect Introduction This repo is the official implementation of "MOS: A Low Latency and Lightweight Framework for Face Detection,

104 Dec 08, 2022
Data-depth-inference - Data depth inference with python

Welcome! This readme will guide you through the use of the code in this reposito

Marco 3 Feb 08, 2022
Python lib to talk to pylontech lithium batteries (US2000, US3000, ...) using RS485

python-pylontech Python lib to talk to pylontech lithium batteries (US2000, US3000, ...) using RS485 What is this lib ? This lib is meant to talk to P

Frank 26 Dec 28, 2022
PyDEns is a framework for solving Ordinary and Partial Differential Equations (ODEs & PDEs) using neural networks

PyDEns PyDEns is a framework for solving Ordinary and Partial Differential Equations (ODEs & PDEs) using neural networks. With PyDEns one can solve PD

Data Analysis Center 220 Dec 26, 2022
Ganilla - Official Pytorch implementation of GANILLA

GANILLA We provide PyTorch implementation for: GANILLA: Generative Adversarial Networks for Image to Illustration Translation. Paper Arxiv Updates (Fe

Samet Hi 462 Dec 05, 2022
RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

RMNet: Equivalently Removing Residual Connection from Networks This repository is the official implementation of "RMNet: Equivalently Removing Residua

184 Jan 04, 2023
3D mesh stylization driven by a text input in PyTorch

Text2Mesh [Project Page] Text2Mesh is a method for text-driven stylization of a 3D mesh, as described in "Text2Mesh: Text-Driven Neural Stylization fo

Threedle (University of Chicago) 649 Dec 27, 2022
Multistream CNN for Robust Acoustic Modeling

Multistream Convolutional Neural Network (CNN) A multistream CNN is a novel neural network architecture for robust acoustic modeling in speech recogni

ASAPP Research 37 Sep 21, 2022
Task Transformer Network for Joint MRI Reconstruction and Super-Resolution (MICCAI 2021)

T2Net Task Transformer Network for Joint MRI Reconstruction and Super-Resolution (MICCAI 2021) [Paper][Code] Dependencies numpy==1.18.5 scikit_image==

64 Nov 23, 2022
Welcome to The Eigensolver Quantum School, a quantum computing crash course designed by students for students.

TEQS Welcome to The Eigensolver Quantum School, a crash course designed by students for students. The aim of this program is to take someone who has n

The Eigensolvers 53 May 18, 2022
A 3D sparse LBM solver implemented using Taichi

taichi_LBM3D Background Taichi_LBM3D is a 3D lattice Boltzmann solver with Multi-Relaxation-Time collision scheme and sparse storage structure impleme

Jianhui Yang 121 Jan 06, 2023
A crash course in six episodes for software developers who want to become machine learning practitioners.

Featured code sample tensorflow-planespotting Code from the Google Cloud NEXT 2018 session "Tensorflow, deep learning and modern convnets, without a P

Google Cloud Platform 2.6k Jan 08, 2023
Spatial Attentive Single-Image Deraining with a High Quality Real Rain Dataset (CVPR'19)

Spatial Attentive Single-Image Deraining with a High Quality Real Rain Dataset (CVPR'19) Tianyu Wang*, Xin Yang*, Ke Xu, Shaozhe Chen, Qiang Zhang, Ry

Steve Wong 177 Dec 01, 2022
[ICCV 2021] Released code for Causal Attention for Unbiased Visual Recognition

CaaM This repo contains the codes of training our CaaM on NICO/ImageNet9 dataset. Due to my recent limited bandwidth, this codebase is still messy, wh

Wang Tan 66 Dec 31, 2022
Vehicle Detection Using Deep Learning and YOLO Algorithm

VehicleDetection Vehicle Detection Using Deep Learning and YOLO Algorithm Dataset take or find vehicle images for create a special dataset for fine-tu

Maryam Boneh 96 Jan 05, 2023
A3C LSTM Atari with Pytorch plus A3G design

NEWLY ADDED A3G A NEW GPU/CPU ARCHITECTURE OF A3C FOR SUBSTANTIALLY ACCELERATED TRAINING!! RL A3C Pytorch NEWLY ADDED A3G!! New implementation of A3C

David Griffis 532 Jan 02, 2023
A PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing"

A PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing" (WebConf 2021). Abstract In this work we propose Pathfind

Benedek Rozemberczki 49 Dec 01, 2022