Codes and pretrained weights for winning submission of 2021 Brain Tumor Segmentation (BraTS) Challenge

Overview

Winning submission to the 2021 Brain Tumor Segmentation Challenge

This repo contains the codes and pretrained weights for the winning submission to the 2021 Brain Tumor Segmentation Challenge by KAIST MRI Lab Team. The code was developed on top of the excellent nnUNet library. Please refer to the original repo for the installation, usages, and common Q&A

Inference with docker image

You can run the inference with the docker image that we submitted to the competition by following these instructions:

  1. Install docker-ce and nvidia-container-toolkit (instruction)
  2. Pull the docker image from here
  3. Gather the data you want to infer on in one folder. The naming of the file should follow the convention: BraTS2021_ID_<contrast>.nii.gz with contrast being flair, t1, t1ce, t2
  4. Run the command: docker run -it --rm --gpus device=0 --name nnunet -v "/your/input/folder/":"/input" -v "/your/output/folder/":"/output" rixez/brats21nnunet , replacing /your/input/folder and /your/output/folder with the absolute paths to your input and output folder.
  5. You can find the prediction results in the specified output folder.

The docker container was built and verified with Pytorch 1.9.1, Cuda 11.4 and a RTX3090. It takes about 4GB of GPU memory for inference with the docker container. The provided docker image might not work with different hardwares or cuda version. In that case, you can try running the models from the command line.

Inference with command line

If you want to run the model without docker, first, download the models from here. Extract the files and put the models in the RESULTS_FOLDER that you set up with nnUNet. Then run the following commands:

nnUNet_predict -i <input_folder> -o <output_folder1> -t <TASK_ID> -m 3d_fullres -tr nnUNetTrainerV2BraTSRegions_DA4_BN_BD --save_npz
nnUNet_predict -i <input_folder> -o <output_folder2> -t <TASK_ID> -m 3d_fullres -tr nnUNetTrainerV2BraTSRegions_DA4_BN_BD_largeUnet_Groupnorm --save_npz
nnUNet_ensemble -f <output_folder1> <output_folder2> -o <final_output_folder>

You need to specify the options in <>. TASK_ID is 500 for the pretrained weights but you can change it depending on the task ID that you set with your installation of nnUNet. To get the results that we submitted, you need to additionally apply post-processing threshold for of 200 and convert the label back to BraTS convention. You can check this file as an example.

Training with the model

You can train the models that we used for the competition using the command:

nnUNet_train 3d_fullres nnUNetTrainerV2BraTSRegions_DA4_BN_BD <TASK_ID> <FOLD> --npz # BL config
nnUNet_train 3d_fullres nnUNetTrainerV2BraTSRegions_DA4_BN_BD_largeUnet_Groupnorm <TASK_ID> <FOLD> --npz # BL + L + GN config
[NeurIPS 2021] "Drawing Robust Scratch Tickets: Subnetworks with Inborn Robustness Are Found within Randomly Initialized Networks" by Yonggan Fu, Qixuan Yu, Yang Zhang, Shang Wu, Xu Ouyang, David Cox, Yingyan Lin

Drawing Robust Scratch Tickets: Subnetworks with Inborn Robustness Are Found within Randomly Initialized Networks Yonggan Fu, Qixuan Yu, Yang Zhang, S

12 Dec 11, 2022
QuanTaichi evaluation suite

QuanTaichi: A Compiler for Quantized Simulations (SIGGRAPH 2021) Yuanming Hu, Jiafeng Liu, Xuanda Yang, Mingkuan Xu, Ye Kuang, Weiwei Xu, Qiang Dai, W

Taichi Developers 120 Jan 04, 2023
A library for researching neural networks compression and acceleration methods.

A library for researching neural networks compression and acceleration methods.

Intel Labs 100 Dec 29, 2022
Prompt Tuning with Rules

PTR Code and datasets for our paper "PTR: Prompt Tuning with Rules for Text Classification" If you use the code, please cite the following paper: @art

THUNLP 118 Dec 30, 2022
Bayesian Inference Tools in Python

BayesPy Bayesian Inference Tools in Python Our goal is, given the discrete outcomes of events, estimate the distribution of categories. Using gradient

Max Sklar 99 Dec 14, 2022
AI Based Smart Exam Proctoring Package

AI Based Smart Exam Proctoring Package It takes image (base64) as input: Provide Output as: Detection of Mobile phone. Detection of More than 1 person

NARENDER KESWANI 3 Sep 09, 2022
PyContinual (An Easy and Extendible Framework for Continual Learning)

PyContinual (An Easy and Extendible Framework for Continual Learning) Easy to Use You can sumply change the baseline, backbone and task, and then read

Zixuan Ke 176 Jan 05, 2023
Implemenets the Contourlet-CNN as described in C-CNN: Contourlet Convolutional Neural Networks, using PyTorch

C-CNN: Contourlet Convolutional Neural Networks This repo implemenets the Contourlet-CNN as described in C-CNN: Contourlet Convolutional Neural Networ

Goh Kun Shun (KHUN) 10 Nov 03, 2022
A PyTorch implementation of "Signed Graph Convolutional Network" (ICDM 2018).

SGCN ⠀ A PyTorch implementation of Signed Graph Convolutional Network (ICDM 2018). Abstract Due to the fact much of today's data can be represented as

Benedek Rozemberczki 251 Nov 30, 2022
This is a project based on retinaface face detection, including ghostnet and mobilenetv3

English | 简体中文 RetinaFace in PyTorch Chinese detailed blog:https://zhuanlan.zhihu.com/p/379730820 Face recognition with masks is still robust---------

pogg 59 Dec 21, 2022
Implementation of various Vision Transformers I found interesting

Implementation of various Vision Transformers I found interesting

Kim Seonghyeon 78 Dec 06, 2022
Code for the paper "Combining Textual Features for the Detection of Hateful and Offensive Language"

The repository provides the source code for the paper "Combining Textual Features for the Detection of Hateful and Offensive Language" submitted to HA

Sherzod Hakimov 3 Aug 04, 2022
A gesture recognition system powered by OpenPose, k-nearest neighbours, and local outlier factor.

OpenHands OpenHands is a gesture recognition system powered by OpenPose, k-nearest neighbours, and local outlier factor. Currently the system can iden

Paul Treanor 12 Jan 10, 2022
CVPR 2021: "Generating Diverse Structure for Image Inpainting With Hierarchical VQ-VAE"

Diverse Structure Inpainting ArXiv | Papar | Supplementary Material | BibTex This repository is for the CVPR 2021 paper, "Generating Diverse Structure

152 Nov 04, 2022
load .txt to train YOLOX, same as Yolo others

YOLOX train your data you need generate data.txt like follow format (per line- one image). prepare one data.txt like this: img_path1 x1,y1,x2,y2,clas

LiMingf 18 Aug 18, 2022
Unbiased Learning To Rank Algorithms (ULTRA)

This is an Unbiased Learning To Rank Algorithms (ULTRA) toolbox, which provides a codebase for experiments and research on learning to rank with human annotated or noisy labels.

71 Dec 01, 2022
Official pytorch implementation for Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion (CVPR 2022)

Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion This repository contains a pytorch implementation of "Learning to Listen: Modeling

50 Dec 17, 2022
An open source implementation of CLIP.

OpenCLIP Welcome to an open source implementation of OpenAI's CLIP (Contrastive Language-Image Pre-training). The goal of this repository is to enable

2.7k Dec 31, 2022
Generalized Matrix Means for Semi-Supervised Learning with Multilayer Graphs

Generalized Matrix Means for Semi-Supervised Learning with Multilayer Graphs MATLAB implementation of the paper: P. Mercado, F. Tudisco, and M. Hein,

Pedro Mercado 6 May 26, 2022
🛠 All-in-one web-based IDE specialized for machine learning and data science.

All-in-one web-based development environment for machine learning Getting Started • Features & Screenshots • Support • Report a Bug • FAQ • Known Issu

Machine Learning Tooling 2.9k Jan 09, 2023