Codes and pretrained weights for winning submission of 2021 Brain Tumor Segmentation (BraTS) Challenge

Overview

Winning submission to the 2021 Brain Tumor Segmentation Challenge

This repo contains the codes and pretrained weights for the winning submission to the 2021 Brain Tumor Segmentation Challenge by KAIST MRI Lab Team. The code was developed on top of the excellent nnUNet library. Please refer to the original repo for the installation, usages, and common Q&A

Inference with docker image

You can run the inference with the docker image that we submitted to the competition by following these instructions:

  1. Install docker-ce and nvidia-container-toolkit (instruction)
  2. Pull the docker image from here
  3. Gather the data you want to infer on in one folder. The naming of the file should follow the convention: BraTS2021_ID_<contrast>.nii.gz with contrast being flair, t1, t1ce, t2
  4. Run the command: docker run -it --rm --gpus device=0 --name nnunet -v "/your/input/folder/":"/input" -v "/your/output/folder/":"/output" rixez/brats21nnunet , replacing /your/input/folder and /your/output/folder with the absolute paths to your input and output folder.
  5. You can find the prediction results in the specified output folder.

The docker container was built and verified with Pytorch 1.9.1, Cuda 11.4 and a RTX3090. It takes about 4GB of GPU memory for inference with the docker container. The provided docker image might not work with different hardwares or cuda version. In that case, you can try running the models from the command line.

Inference with command line

If you want to run the model without docker, first, download the models from here. Extract the files and put the models in the RESULTS_FOLDER that you set up with nnUNet. Then run the following commands:

nnUNet_predict -i <input_folder> -o <output_folder1> -t <TASK_ID> -m 3d_fullres -tr nnUNetTrainerV2BraTSRegions_DA4_BN_BD --save_npz
nnUNet_predict -i <input_folder> -o <output_folder2> -t <TASK_ID> -m 3d_fullres -tr nnUNetTrainerV2BraTSRegions_DA4_BN_BD_largeUnet_Groupnorm --save_npz
nnUNet_ensemble -f <output_folder1> <output_folder2> -o <final_output_folder>

You need to specify the options in <>. TASK_ID is 500 for the pretrained weights but you can change it depending on the task ID that you set with your installation of nnUNet. To get the results that we submitted, you need to additionally apply post-processing threshold for of 200 and convert the label back to BraTS convention. You can check this file as an example.

Training with the model

You can train the models that we used for the competition using the command:

nnUNet_train 3d_fullres nnUNetTrainerV2BraTSRegions_DA4_BN_BD <TASK_ID> <FOLD> --npz # BL config
nnUNet_train 3d_fullres nnUNetTrainerV2BraTSRegions_DA4_BN_BD_largeUnet_Groupnorm <TASK_ID> <FOLD> --npz # BL + L + GN config
Pytorch Implementation of Various Point Transformers

Pytorch Implementation of Various Point Transformers Recently, various methods applied transformers to point clouds: PCT: Point Cloud Transformer (Men

Neil You 434 Dec 30, 2022
LQM - Improving Object Detection by Estimating Bounding Box Quality Accurately

Improving Object Detection by Estimating Bounding Box Quality Accurately Abstract Object detection aims to locate and classify object instances in ima

IM Lab., POSTECH 0 Sep 28, 2022
Paper: Cross-View Kernel Similarity Metric Learning Using Pairwise Constraints for Person Re-identification

Cross-View Kernel Similarity Metric Learning Using Pairwise Constraints for Person Re-identification T M Feroz Ali, Subhasis Chaudhuri, ICVGIP-20-21

T M Feroz Ali 3 Jun 17, 2022
Object Depth via Motion and Detection Dataset

ODMD Dataset ODMD is the first dataset for learning Object Depth via Motion and Detection. ODMD training data are configurable and extensible, with ea

Brent Griffin 172 Dec 21, 2022
Code for our method RePRI for Few-Shot Segmentation. Paper at http://arxiv.org/abs/2012.06166

Region Proportion Regularized Inference (RePRI) for Few-Shot Segmentation In this repo, we provide the code for our paper : "Few-Shot Segmentation Wit

Malik Boudiaf 138 Dec 12, 2022
Implementation of the method proposed in the paper "Neural Descriptor Fields: SE(3)-Equivariant Object Representations for Manipulation"

Neural Descriptor Fields (NDF) PyTorch implementation for training continuous 3D neural fields to represent dense correspondence across objects, and u

167 Jan 06, 2023
This repository contains code for the paper "Disentangling Label Distribution for Long-tailed Visual Recognition", published at CVPR' 2021

Disentangling Label Distribution for Long-tailed Visual Recognition (CVPR 2021) Arxiv link Blog post This codebase is built on Causal Norm. Install co

Hyperconnect 85 Oct 18, 2022
Codes for our IJCAI21 paper: Dialogue Discourse-Aware Graph Model and Data Augmentation for Meeting Summarization

DDAMS This is the pytorch code for our IJCAI 2021 paper Dialogue Discourse-Aware Graph Model and Data Augmentation for Meeting Summarization [Arxiv Pr

xcfeng 55 Dec 27, 2022
METER: Multimodal End-to-end TransformER

METER Code and pre-trained models will be publicized soon. Citation @article{dou2021meter, title={An Empirical Study of Training End-to-End Vision-a

Zi-Yi Dou 257 Jan 06, 2023
Controlling Hill Climb Racing with Hand Tacking

Controlling Hill Climb Racing with Hand Tacking Opened Palm for Gas Closed Palm for Brake

Rohit Ingole 3 Jan 18, 2022
Python library to receive live stream events like comments and gifts in realtime from TikTok LIVE.

TikTokLive A python library to connect to and read events from TikTok's LIVE service A python library to receive and decode livestream events such as

Isaac Kogan 277 Dec 23, 2022
image scene graph generation benchmark

Scene Graph Benchmark in PyTorch 1.7 This project is based on maskrcnn-benchmark Highlights Upgrad to pytorch 1.7 Multi-GPU training and inference Bat

Microsoft 303 Dec 27, 2022
Pytorch implementation of Rosca, Mihaela, et al. "Variational Approaches for Auto-Encoding Generative Adversarial Networks."

alpha-GAN Unofficial pytorch implementation of Rosca, Mihaela, et al. "Variational Approaches for Auto-Encoding Generative Adversarial Networks." arXi

Victor Shepardson 78 Dec 08, 2022
Tutorials, assignments, and competitions for MIT Deep Learning related courses.

MIT Deep Learning This repository is a collection of tutorials for MIT Deep Learning courses. More added as courses progress. Tutorial: Deep Learning

Lex Fridman 9.5k Jan 07, 2023
PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT

PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT

NVIDIA Corporation 1.8k Dec 30, 2022
Customizable RecSys Simulator for OpenAI Gym

gym-recsys: Customizable RecSys Simulator for OpenAI Gym Installation | How to use | Examples | Citation This package describes an OpenAI Gym interfac

Xingdong Zuo 14 Dec 08, 2022
A torch.Tensor-like DataFrame library supporting multiple execution runtimes and Arrow as a common memory format

TorchArrow (Warning: Unstable Prototype) This is a prototype library currently under heavy development. It does not currently have stable releases, an

Facebook Research 536 Jan 06, 2023
CIFAR-10 Photo Classification

Image-Classification CIFAR-10 Photo Classification CIFAR-10_Dataset_Classfication CIFAR-10 Photo Classification Dataset CIFAR is an acronym that stand

ADITYA SHAH 1 Jan 05, 2022
A state of the art of new lightweight YOLO model implemented by TensorFlow 2.

CSL-YOLO: A New Lightweight Object Detection System for Edge Computing This project provides a SOTA level lightweight YOLO called "Cross-Stage Lightwe

Miles Zhang 54 Dec 21, 2022
The LaTeX and Python code for generating the paper, experiments' results and visualizations reported in each paper is available (whenever possible) in the paper's directory

This repository contains the software implementation of most algorithms used or developed in my research. The LaTeX and Python code for generating the

João Fonseca 3 Jan 03, 2023