PyTorch implementations of deep reinforcement learning algorithms and environments

Overview

Deep Reinforcement Learning Algorithms with PyTorch

Travis CI contributions welcome

RL PyTorch

This repository contains PyTorch implementations of deep reinforcement learning algorithms and environments.

(To help you remember things you learn about machine learning in general write them in Save All and try out the public deck there about Fast AI's machine learning textbook.)

Algorithms Implemented

  1. Deep Q Learning (DQN) (Mnih et al. 2013)
  2. DQN with Fixed Q Targets (Mnih et al. 2013)
  3. Double DQN (DDQN) (Hado van Hasselt et al. 2015)
  4. DDQN with Prioritised Experience Replay (Schaul et al. 2016)
  5. Dueling DDQN (Wang et al. 2016)
  6. REINFORCE (Williams et al. 1992)
  7. Deep Deterministic Policy Gradients (DDPG) (Lillicrap et al. 2016 )
  8. Twin Delayed Deep Deterministic Policy Gradients (TD3) (Fujimoto et al. 2018)
  9. Soft Actor-Critic (SAC) (Haarnoja et al. 2018)
  10. Soft Actor-Critic for Discrete Actions (SAC-Discrete) (Christodoulou 2019)
  11. Asynchronous Advantage Actor Critic (A3C) (Mnih et al. 2016)
  12. Syncrhonous Advantage Actor Critic (A2C)
  13. Proximal Policy Optimisation (PPO) (Schulman et al. 2017)
  14. DQN with Hindsight Experience Replay (DQN-HER) (Andrychowicz et al. 2018)
  15. DDPG with Hindsight Experience Replay (DDPG-HER) (Andrychowicz et al. 2018 )
  16. Hierarchical-DQN (h-DQN) (Kulkarni et al. 2016)
  17. Stochastic NNs for Hierarchical Reinforcement Learning (SNN-HRL) (Florensa et al. 2017)
  18. Diversity Is All You Need (DIAYN) (Eyensbach et al. 2018)

All implementations are able to quickly solve Cart Pole (discrete actions), Mountain Car Continuous (continuous actions), Bit Flipping (discrete actions with dynamic goals) or Fetch Reach (continuous actions with dynamic goals). I plan to add more hierarchical RL algorithms soon.

Environments Implemented

  1. Bit Flipping Game (as described in Andrychowicz et al. 2018)
  2. Four Rooms Game (as described in Sutton et al. 1998)
  3. Long Corridor Game (as described in Kulkarni et al. 2016)
  4. Ant-{Maze, Push, Fall} (as desribed in Nachum et al. 2018 and their accompanying code)

Results

1. Cart Pole and Mountain Car

Below shows various RL algorithms successfully learning discrete action game Cart Pole or continuous action game Mountain Car. The mean result from running the algorithms with 3 random seeds is shown with the shaded area representing plus and minus 1 standard deviation. Hyperparameters used can be found in files results/Cart_Pole.py and results/Mountain_Car.py.

Cart Pole and Mountain Car Results

2. Hindsight Experience Replay (HER) Experiements

Below shows the performance of DQN and DDPG with and without Hindsight Experience Replay (HER) in the Bit Flipping (14 bits) and Fetch Reach environments described in the papers Hindsight Experience Replay 2018 and Multi-Goal Reinforcement Learning 2018. The results replicate the results found in the papers and show how adding HER can allow an agent to solve problems that it otherwise would not be able to solve at all. Note that the same hyperparameters were used within each pair of agents and so the only difference between them was whether hindsight was used or not.

HER Experiment Results

3. Hierarchical Reinforcement Learning Experiments

The results on the left below show the performance of DQN and the algorithm hierarchical-DQN from Kulkarni et al. 2016 on the Long Corridor environment also explained in Kulkarni et al. 2016. The environment requires the agent to go to the end of a corridor before coming back in order to receive a larger reward. This delayed gratification and the aliasing of states makes it a somewhat impossible game for DQN to learn but if we introduce a meta-controller (as in h-DQN) which directs a lower-level controller how to behave we are able to make more progress. This aligns with the results found in the paper.

The results on the right show the performance of DDQN and algorithm Stochastic NNs for Hierarchical Reinforcement Learning (SNN-HRL) from Florensa et al. 2017. DDQN is used as the comparison because the implementation of SSN-HRL uses 2 DDQN algorithms within it. Note that the first 300 episodes of training for SNN-HRL were used for pre-training which is why there is no reward for those episodes.

Long Corridor and Four Rooms

Usage

The repository's high-level structure is:

├── agents                    
    ├── actor_critic_agents   
    ├── DQN_agents         
    ├── policy_gradient_agents
    └── stochastic_policy_search_agents 
├── environments   
├── results             
    └── data_and_graphs        
├── tests
├── utilities             
    └── data structures            

i) To watch the agents learn the above games

To watch all the different agents learn Cart Pole follow these steps:

git clone https://github.com/p-christ/Deep_RL_Implementations.git
cd Deep_RL_Implementations

conda create --name myenvname
y
conda activate myenvname

pip3 install -r requirements.txt

python results/Cart_Pole.py

For other games change the last line to one of the other files in the Results folder.

ii) To train the agents on another game

Most Open AI gym environments should work. All you would need to do is change the config.environment field (look at Results/Cart_Pole.py for an example of this).

You can also play with your own custom game if you create a separate class that inherits from gym.Env. See Environments/Four_Rooms_Environment.py for an example of a custom environment and then see the script Results/Four_Rooms.py to see how to have agents play the environment.

Owner
Petros Christodoulou
Petros Christodoulou
This is the repository for Learning to Generate Piano Music With Sustain Pedals

SusPedal-Gen This is the official repository of Learning to Generate Piano Music With Sustain Pedals Demo Page Dataset The dataset used in this projec

Joann Ching 12 Sep 02, 2022
Activity image-based video retrieval

Cross-modal-retrieval Our approach is focus on Activity Image-to-Video Retrieval (AIVR) task. The compared methods are state-of-the-art single modalit

BCMI 75 Oct 21, 2021
MAU: A Motion-Aware Unit for Video Prediction and Beyond, NeurIPS2021

MAU (NeurIPS2021) Zheng Chang, Xinfeng Zhang, Shanshe Wang, Siwei Ma, Yan Ye, Xinguang Xiang, Wen GAo. Official PyTorch Code for "MAU: A Motion-Aware

ZhengChang 20 Nov 25, 2022
[ICLR 2021] Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization

Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization Kaidi Cao, Yining Chen, Junwei Lu, Nikos Arechiga, Adrien Gaidon, Tengyu Ma

Kaidi Cao 29 Oct 20, 2022
A baseline code for VSPW

A baseline code for VSPW Preparation Download VSPW dataset The VSPW dataset with extracted frames and masks is available here.

28 Aug 22, 2022
The code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers".

Energy-based Conditional Generative Adversarial Network (ECGAN) This is the code for the NeurIPS 2021 paper "A Unified View of cGANs with and without

sianchen 22 May 28, 2022
Official implementation of GraphMask as presented in our paper Interpreting Graph Neural Networks for NLP With Differentiable Edge Masking.

GraphMask This repository contains an implementation of GraphMask, the interpretability technique for graph neural networks presented in our ICLR 2021

Michael Schlichtkrull 29 Sep 02, 2022
GndNet: Fast ground plane estimation and point cloud segmentation for autonomous vehicles using deep neural networks.

GndNet: Fast Ground plane Estimation and Point Cloud Segmentation for Autonomous Vehicles. Authors: Anshul Paigwar, Ozgur Erkent, David Sierra Gonzale

Anshul Paigwar 114 Dec 29, 2022
Prometheus Exporter for data scraped from datenplattform.darmstadt.de

darmstadt-opendata-exporter Scrapes data from https://datenplattform.darmstadt.de and presents it in the Prometheus Exposition format. Pull requests w

Martin Weinelt 2 Apr 12, 2022
The official implementation of Equalization Loss v1 & v2 (CVPR 2020, 2021) based on MMDetection.

The Equalization Losses for Long-tailed Object Detection and Instance Segmentation This repo is official implementation CVPR 2021 paper: Equalization

Jingru Tan 129 Dec 16, 2022
Official PyTorch implementation of Data-free Knowledge Distillation for Object Detection, WACV 2021.

Introduction This repository is the official PyTorch implementation of Data-free Knowledge Distillation for Object Detection, WACV 2021. Data-free Kno

NVIDIA Research Projects 50 Jan 05, 2023
Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems

Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems This is our experimental code for RecSys 2021 paper "Learning

11 Jul 28, 2022
Supplementary code for TISMIR paper "Sliding-Window Pitch-Class Histograms as a Means of Modeling Musical Form"

Sliding-Window Pitch-Class Histograms as a Means of Modeling Musical Form This is supplementary code for the TISMIR paper Sliding-Window Pitch-Class H

1 Nov 27, 2021
Implementation of Retrieval-Augmented Denoising Diffusion Probabilistic Models in Pytorch

Retrieval-Augmented Denoising Diffusion Probabilistic Models (wip) Implementation of Retrieval-Augmented Denoising Diffusion Probabilistic Models in P

Phil Wang 55 Jan 01, 2023
LaneDetectionAndLaneKeeping - Lane Detection And Lane Keeping

LaneDetectionAndLaneKeeping This project is part of my bachelor's thesis. The go

5 Jun 27, 2022
Spatial Sparse Convolution Library

SpConv: Spatially Sparse Convolution Library PyPI Install Downloads CPU (Linux Only) pip install spconv CUDA 10.2 pip install spconv-cu102 CUDA 11.1 p

Yan Yan 1.2k Jan 07, 2023
Official repo for AutoInt: Automatic Integration for Fast Neural Volume Rendering in CVPR 2021

AutoInt: Automatic Integration for Fast Neural Volume Rendering CVPR 2021 Project Page | Video | Paper PyTorch implementation of automatic integration

Stanford Computational Imaging Lab 149 Dec 22, 2022
Robotic Process Automation in Windows and Linux by using Driagrams.net BPMN diagrams.

BPMN_RPA Robotic Process Automation in Windows and Linux by using BPMN diagrams. With this Framework you can draw Business Process Model Notation base

23 Dec 14, 2022
Garbage classification using structure data.

垃圾分类模型使用说明 1.包含以下数据文件 文件 描述 data/MaterialMapping.csv 物体以及其归类的信息 data/TestRecords 光谱原始测试数据 CSV 文件 data/TestRecordDesc.zip CSV 文件描述文件 data/Boundaries.cs

wenqi 1 Dec 10, 2021
Official Implementation of "Tracking Grow-Finish Pigs Across Large Pens Using Multiple Cameras"

Multi Camera Pig Tracking Official Implementation of Tracking Grow-Finish Pigs Across Large Pens Using Multiple Cameras CVPR2021 CV4Animals Workshop P

44 Jan 06, 2023