PyTorch implementations of deep reinforcement learning algorithms and environments

Overview

Deep Reinforcement Learning Algorithms with PyTorch

Travis CI contributions welcome

RL PyTorch

This repository contains PyTorch implementations of deep reinforcement learning algorithms and environments.

(To help you remember things you learn about machine learning in general write them in Save All and try out the public deck there about Fast AI's machine learning textbook.)

Algorithms Implemented

  1. Deep Q Learning (DQN) (Mnih et al. 2013)
  2. DQN with Fixed Q Targets (Mnih et al. 2013)
  3. Double DQN (DDQN) (Hado van Hasselt et al. 2015)
  4. DDQN with Prioritised Experience Replay (Schaul et al. 2016)
  5. Dueling DDQN (Wang et al. 2016)
  6. REINFORCE (Williams et al. 1992)
  7. Deep Deterministic Policy Gradients (DDPG) (Lillicrap et al. 2016 )
  8. Twin Delayed Deep Deterministic Policy Gradients (TD3) (Fujimoto et al. 2018)
  9. Soft Actor-Critic (SAC) (Haarnoja et al. 2018)
  10. Soft Actor-Critic for Discrete Actions (SAC-Discrete) (Christodoulou 2019)
  11. Asynchronous Advantage Actor Critic (A3C) (Mnih et al. 2016)
  12. Syncrhonous Advantage Actor Critic (A2C)
  13. Proximal Policy Optimisation (PPO) (Schulman et al. 2017)
  14. DQN with Hindsight Experience Replay (DQN-HER) (Andrychowicz et al. 2018)
  15. DDPG with Hindsight Experience Replay (DDPG-HER) (Andrychowicz et al. 2018 )
  16. Hierarchical-DQN (h-DQN) (Kulkarni et al. 2016)
  17. Stochastic NNs for Hierarchical Reinforcement Learning (SNN-HRL) (Florensa et al. 2017)
  18. Diversity Is All You Need (DIAYN) (Eyensbach et al. 2018)

All implementations are able to quickly solve Cart Pole (discrete actions), Mountain Car Continuous (continuous actions), Bit Flipping (discrete actions with dynamic goals) or Fetch Reach (continuous actions with dynamic goals). I plan to add more hierarchical RL algorithms soon.

Environments Implemented

  1. Bit Flipping Game (as described in Andrychowicz et al. 2018)
  2. Four Rooms Game (as described in Sutton et al. 1998)
  3. Long Corridor Game (as described in Kulkarni et al. 2016)
  4. Ant-{Maze, Push, Fall} (as desribed in Nachum et al. 2018 and their accompanying code)

Results

1. Cart Pole and Mountain Car

Below shows various RL algorithms successfully learning discrete action game Cart Pole or continuous action game Mountain Car. The mean result from running the algorithms with 3 random seeds is shown with the shaded area representing plus and minus 1 standard deviation. Hyperparameters used can be found in files results/Cart_Pole.py and results/Mountain_Car.py.

Cart Pole and Mountain Car Results

2. Hindsight Experience Replay (HER) Experiements

Below shows the performance of DQN and DDPG with and without Hindsight Experience Replay (HER) in the Bit Flipping (14 bits) and Fetch Reach environments described in the papers Hindsight Experience Replay 2018 and Multi-Goal Reinforcement Learning 2018. The results replicate the results found in the papers and show how adding HER can allow an agent to solve problems that it otherwise would not be able to solve at all. Note that the same hyperparameters were used within each pair of agents and so the only difference between them was whether hindsight was used or not.

HER Experiment Results

3. Hierarchical Reinforcement Learning Experiments

The results on the left below show the performance of DQN and the algorithm hierarchical-DQN from Kulkarni et al. 2016 on the Long Corridor environment also explained in Kulkarni et al. 2016. The environment requires the agent to go to the end of a corridor before coming back in order to receive a larger reward. This delayed gratification and the aliasing of states makes it a somewhat impossible game for DQN to learn but if we introduce a meta-controller (as in h-DQN) which directs a lower-level controller how to behave we are able to make more progress. This aligns with the results found in the paper.

The results on the right show the performance of DDQN and algorithm Stochastic NNs for Hierarchical Reinforcement Learning (SNN-HRL) from Florensa et al. 2017. DDQN is used as the comparison because the implementation of SSN-HRL uses 2 DDQN algorithms within it. Note that the first 300 episodes of training for SNN-HRL were used for pre-training which is why there is no reward for those episodes.

Long Corridor and Four Rooms

Usage

The repository's high-level structure is:

├── agents                    
    ├── actor_critic_agents   
    ├── DQN_agents         
    ├── policy_gradient_agents
    └── stochastic_policy_search_agents 
├── environments   
├── results             
    └── data_and_graphs        
├── tests
├── utilities             
    └── data structures            

i) To watch the agents learn the above games

To watch all the different agents learn Cart Pole follow these steps:

git clone https://github.com/p-christ/Deep_RL_Implementations.git
cd Deep_RL_Implementations

conda create --name myenvname
y
conda activate myenvname

pip3 install -r requirements.txt

python results/Cart_Pole.py

For other games change the last line to one of the other files in the Results folder.

ii) To train the agents on another game

Most Open AI gym environments should work. All you would need to do is change the config.environment field (look at Results/Cart_Pole.py for an example of this).

You can also play with your own custom game if you create a separate class that inherits from gym.Env. See Environments/Four_Rooms_Environment.py for an example of a custom environment and then see the script Results/Four_Rooms.py to see how to have agents play the environment.

Owner
Petros Christodoulou
Petros Christodoulou
A collection of metrics for evaluating timbre dissimilarity using the TorchMetrics API

Timbre Dissimilarity Metrics A collection of metrics for evaluating timbre dissimilarity using the TorchMetrics API Installation pip install -e . Usag

Ben Hayes 21 Jan 05, 2022
Sign Language is detected in realtime using video sequences. Our approach involves MediaPipe Holistic for keypoints extraction and LSTM Model for prediction.

RealTime Sign Language Detection using Action Recognition Approach Real-Time Sign Language is commonly predicted using models whose architecture consi

Rishikesh S 15 Aug 20, 2022
Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

HamasKhan 3 Jul 08, 2022
Road Crack Detection Using Deep Learning Methods

Road-Crack-Detection-Using-Deep-Learning-Methods This is my Diploma Thesis ¨Road Crack Detection Using Deep Learning Methods¨ under the supervision of

Aggelos Katsaliros 3 May 03, 2022
Automatic library of congress classification, using word embeddings from book titles and synopses.

Automatic Library of Congress Classification The Library of Congress Classification (LCC) is a comprehensive classification system that was first deve

Ahmad Pourihosseini 3 Oct 01, 2022
ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees

ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees This repository is the official implementation of the empirica

Kuan-Lin (Jason) Chen 2 Oct 02, 2022
QilingLab challenge writeup

qiling lab writeup shielder 在 2021/7/21 發布了 QilingLab 來幫助學習 qiling framwork 的用法,剛好最近有用到,順手解了一下並寫了一下 writeup。 前情提要 Qiling 是一款功能強大的模擬框架,和 qemu user mode

Yuan 17 Nov 17, 2022
Official PyTorch implementation of BlobGAN: Spatially Disentangled Scene Representations

BlobGAN: Spatially Disentangled Scene Representations Official PyTorch Implementation Paper | Project Page | Video | Interactive Demo BlobGAN.mp4 This

148 Dec 29, 2022
[AAAI 2022] Sparse Structure Learning via Graph Neural Networks for Inductive Document Classification

Sparse Structure Learning via Graph Neural Networks for inductive document classification Make graph dataset create co-occurrence graph for datasets.

16 Dec 22, 2022
🔮 Execution time predictions for deep neural network training iterations across different GPUs.

Habitat: A Runtime-Based Computational Performance Predictor for Deep Neural Network Training Habitat is a tool that predicts a deep neural network's

Geoffrey Yu 44 Dec 27, 2022
Multi-task Self-supervised Object Detection via Recycling of Bounding Box Annotations (CVPR, 2019)

Multi-task Self-supervised Object Detection via Recycling of Bounding Box Annotations (CVPR 2019) To make better use of given limited labels, we propo

126 Sep 13, 2022
Py-faster-rcnn - Faster R-CNN (Python implementation)

py-faster-rcnn has been deprecated. Please see Detectron, which includes an implementation of Mask R-CNN. Disclaimer The official Faster R-CNN code (w

Ross Girshick 7.8k Jan 03, 2023
Additional environments compatible with OpenAI gym

Decentralized Control of Quadrotor Swarms with End-to-end Deep Reinforcement Learning A codebase for training reinforcement learning policies for quad

Zhehui Huang 40 Dec 06, 2022
FLVIS: Feedback Loop Based Visual Initial SLAM

FLVIS Feedback Loop Based Visual Inertial SLAM 1-Video EuRoC DataSet MH_05 Handheld Test in Lab FlVIS on UAV Platform 2-Relevent Publication: Under Re

UAV Lab - HKPolyU 182 Dec 04, 2022
Guiding evolutionary strategies by (inaccurate) differentiable robot simulators @ NeurIPS, 4th Robot Learning Workshop

Guiding Evolutionary Strategies by Differentiable Robot Simulators In recent years, Evolutionary Strategies were actively explored in robotic tasks fo

Vladislav Kurenkov 4 Dec 14, 2021
Jaxtorch (a jax nn library)

Jaxtorch (a jax nn library) This is my jax based nn library. I created this because I was annoyed by the complexity and 'magic'-ness of the popular ja

nshepperd 17 Dec 08, 2022
Food Drinks and groceries Images Multi Lingual (FooDI-ML) dataset.

Food Drinks and groceries Images Multi Lingual (FooDI-ML) dataset.

41 Jan 04, 2023
Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth [Paper]

Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth [Paper] Downloads [Downloads] Trained ckpt files for NYU Depth V2 and

98 Jan 01, 2023
git《Commonsense Knowledge Base Completion with Structural and Semantic Context》(AAAI 2020) GitHub: [fig1]

Commonsense Knowledge Base Completion with Structural and Semantic Context Code for the paper Commonsense Knowledge Base Completion with Structural an

AI2 96 Nov 05, 2022
A toolset of Python programs for signal modeling and indentification via sparse semilinear autoregressors.

SPAAR Description A toolset of Python programs for signal modeling via sparse semilinear autoregressors. References Vides, F. (2021). Computing Semili

Fredy Vides 0 Oct 30, 2021