Recovering Brain Structure Network Using Functional Connectivity

Overview

Recovering-Brain-Structure-Network-Using-Functional-Connectivity

Framework:

framework

Papers:

This repository provides a PyTorch implementation of the models adopted in the two papers:

  • Zhang, Lu, Li Wang, and Dajiang Zhu. "Recovering brain structural connectivity from functional connectivity via multi-gcn based generative adversarial network." International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2020.
  • Zhang, Lu, Li Wang, and Dajiang Zhu. "Predicting Brain Structure Network using Functional Connectivity." in process.

The first paper proposes the Multi-GCN GAN model and structure preserving loss, and the second paper further expands the research on different datasets, different atlases, different functional connectivity generation methods, different models, and new evaluation measures. New results have been obtained.

Code:

dataloader.py

This file includes the preprocessing and normalization operations of the data. All the details have been introduced in the two papers. The only element needs to pay attention to is the empty list, which records the ids of the empty ROIs of specific atlases. For example, there are two brain regions in Destrieux Atlas are empty (Medial_wall for both left and right hemispheres). Therefore the corresponding two rows and columns in the generated SC and FC are zeros. We deleted these rows and columns.

model.py

We implemented different models in this file, including two different CNN-based generators, Multi-GCN-based generator and GCN-based discriminator. Different models can be chosen by directly calling the corresponding classes when run the train.py file. Different model architectures are as follows:

  • CNN (CNN-based generator, MSE loss and PCC loss)
  • Multi-GCN (Multi-GCN-based generator, MSE loss and PCC loss)
  • CNN based GAN (CNN-based generator and GCN-based discriminator, SP loss)
  • MGCN-GAN (Multi-GCN-based generator and GCN-based discriminator, SP loss)

When adopting the proposed MGCN-GAN architecture, the different topology updating methods and differnet initializations of learnable combination coefficients of multiple GCNs (theta) can be directly changed in this file, and we have annotated in this file about how to change them. For Linear regression model, we directly called the LinearRegression from sklearn.linear_model package.

Loss_custom.py

The proposed SP loss includes three components: GAN loss, MSE loss and PCC loss. In this file, we implemented the PCC loss. For the MSE loss and GAN loss, we directly called the loss functions from torch.nn module in train.py file. By directly editing train.py file, different loss functions can be chosen, including:

  • GAN Loss
  • MSE+GAN loss
  • PCC+GAN loss
  • SP loss

train.py

You need to run this file to start. All the hyper-parameters can be defined in this file.

Run python ./train.py -atlas='atlas1' -gpu_id=1.

Tested with:

  • PyTorch 1.9.0
  • Python 3.7.0

Data:

We used 1064 subjects from HCP dataset and 132 subjects from ADNI dataset in our research. For each subject, we generated the structural connectivity (SC) and the functional connectivity (FC) matrices. All of the connectivity matrices can be shared for research purpose. Please contact the author to get the data by sending email to [email protected].

Citation:

If you used the code or data of this project, please cite:

@inproceedings{zhang2020recovering,
  title={Recovering brain structural connectivity from functional connectivity via multi-gcn based generative adversarial network},
  author={Zhang, Lu and Wang, Li and Zhu, Dajiang},
  booktitle={International Conference on Medical Image Computing and Computer-Assisted Intervention},
  pages={53--61},
  year={2020},
  organization={Springer}
}
This repository is an implementation of our NeurIPS 2021 paper (Stylized Dialogue Generation with Multi-Pass Dual Learning) in PyTorch.

MPDL---TODO This repository is an implementation of our NeurIPS 2021 paper (Stylized Dialogue Generation with Multi-Pass Dual Learning) in PyTorch. Ci

CodebaseLi 3 Nov 27, 2022
Detectron2-FC a fast construction platform of neural network algorithm based on detectron2

What is Detectron2-FC Detectron2-FC a fast construction platform of neural network algorithm based on detectron2. We have been working hard in two dir

董晋宗 9 Jun 06, 2022
NHS AI Lab Skunkworks project: Long Stayer Risk Stratification

NHS AI Lab Skunkworks project: Long Stayer Risk Stratification A pilot project for the NHS AI Lab Skunkworks team, Long Stayer Risk Stratification use

NHSX 21 Nov 14, 2022
Code for Mesh Convolution Using a Learned Kernel Basis

Mesh Convolution This repository contains the implementation (in PyTorch) of the paper FULLY CONVOLUTIONAL MESH AUTOENCODER USING EFFICIENT SPATIALLY

Yi_Zhou 35 Jan 03, 2023
[ArXiv 2021] One-Shot Generative Domain Adaptation

GenDA - One-Shot Generative Domain Adaptation One-Shot Generative Domain Adaptation Ceyuan Yang*, Yujun Shen*, Zhiyi Zhang, Yinghao Xu, Jiapeng Zhu, Z

GenForce: May Generative Force Be with You 46 Dec 19, 2022
Code repository accompanying the paper "On Adversarial Robustness: A Neural Architecture Search perspective"

On Adversarial Robustness: A Neural Architecture Search perspective Preparation: Clone the repository: https://github.com/tdchaitanya/nas-robustness.g

Chaitanya Devaguptapu 4 Nov 10, 2022
To model the probability of a soccer coach leave his/her team during Campeonato Brasileiro for 10 chosen teams and considering years 2018, 2019 and 2020.

To model the probability of a soccer coach leave his/her team during Campeonato Brasileiro for 10 chosen teams and considering years 2018, 2019 and 2020.

Larissa Sayuri Futino Castro dos Santos 1 Jan 20, 2022
Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation", Haoxiang Wang, Han Zhao, Bo Li.

Bridging Multi-Task Learning and Meta-Learning Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Trainin

AI Secure 57 Dec 15, 2022
Synthesize photos from PhotoDNA using machine learning 🌱

Ribosome Synthesize photos from PhotoDNA. See the blog post for more information. Installation Dependencies You can install Python dependencies using

Anish Athalye 112 Nov 23, 2022
Phy-Q: A Benchmark for Physical Reasoning

Phy-Q: A Benchmark for Physical Reasoning Cheng Xue*, Vimukthini Pinto*, Chathura Gamage* Ekaterina Nikonova, Peng Zhang, Jochen Renz School of Comput

29 Dec 19, 2022
This repo is duplication of jwyang/faster-rcnn.pytorch

Faster RCNN Pytorch This repo is duplication of jwyang/faster-rcnn.pytorch C/C++ code are removed and easier to study. Python 3.8.5 Ubuntu 20.04.1 LTS

Kim Jihwan 1 Jan 14, 2022
Code for "Long Range Probabilistic Forecasting in Time-Series using High Order Statistics"

Long Range Probabilistic Forecasting in Time-Series using High Order Statistics This is the code produced as part of the paper Long Range Probabilisti

16 Dec 06, 2022
Milano is a tool for automating hyper-parameters search for your models on a backend of your choice.

Milano (This is a research project, not an official NVIDIA product.) Documentation https://nvidia.github.io/Milano Milano (Machine learning autotuner

NVIDIA Corporation 147 Dec 17, 2022
PyTorch Implementation of Google Brain's WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis

WaveGrad2 - PyTorch Implementation PyTorch Implementation of Google Brain's WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis. Status (202

Keon Lee 59 Dec 06, 2022
Code for Environment Dynamics Decomposition (ED2).

ED2 Code for Environment Dynamics Decomposition (ED2). Installation Follow the installation in MBPO and Dreamer. Usage First follow the SD2 method for

0 Aug 10, 2021
nfelo: a power ranking, prediction, and betting model for the NFL

nfelo nfelo is a power ranking, prediction, and betting model for the NFL. Nfelo take's 538's Elo framework and further adapts it for the NFL, hence t

6 Nov 22, 2022
An efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.

An efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.

Zou 33 Jan 03, 2023
codes for Image Inpainting with External-internal Learning and Monochromic Bottleneck

Image Inpainting with External-internal Learning and Monochromic Bottleneck This repository is for the CVPR 2021 paper: 'Image Inpainting with Externa

97 Nov 29, 2022
SafePicking: Learning Safe Object Extraction via Object-Level Mapping, ICRA 2022

SafePicking Learning Safe Object Extraction via Object-Level Mapping Kentaro Wad

Kentaro Wada 49 Oct 24, 2022
[BMVC'21] Official PyTorch Implementation of Grounded Situation Recognition with Transformers

Grounded Situation Recognition with Transformers Paper | Model Checkpoint This is the official PyTorch implementation of Grounded Situation Recognitio

Junhyeong Cho 18 Jul 19, 2022