Recovering Brain Structure Network Using Functional Connectivity

Overview

Recovering-Brain-Structure-Network-Using-Functional-Connectivity

Framework:

framework

Papers:

This repository provides a PyTorch implementation of the models adopted in the two papers:

  • Zhang, Lu, Li Wang, and Dajiang Zhu. "Recovering brain structural connectivity from functional connectivity via multi-gcn based generative adversarial network." International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2020.
  • Zhang, Lu, Li Wang, and Dajiang Zhu. "Predicting Brain Structure Network using Functional Connectivity." in process.

The first paper proposes the Multi-GCN GAN model and structure preserving loss, and the second paper further expands the research on different datasets, different atlases, different functional connectivity generation methods, different models, and new evaluation measures. New results have been obtained.

Code:

dataloader.py

This file includes the preprocessing and normalization operations of the data. All the details have been introduced in the two papers. The only element needs to pay attention to is the empty list, which records the ids of the empty ROIs of specific atlases. For example, there are two brain regions in Destrieux Atlas are empty (Medial_wall for both left and right hemispheres). Therefore the corresponding two rows and columns in the generated SC and FC are zeros. We deleted these rows and columns.

model.py

We implemented different models in this file, including two different CNN-based generators, Multi-GCN-based generator and GCN-based discriminator. Different models can be chosen by directly calling the corresponding classes when run the train.py file. Different model architectures are as follows:

  • CNN (CNN-based generator, MSE loss and PCC loss)
  • Multi-GCN (Multi-GCN-based generator, MSE loss and PCC loss)
  • CNN based GAN (CNN-based generator and GCN-based discriminator, SP loss)
  • MGCN-GAN (Multi-GCN-based generator and GCN-based discriminator, SP loss)

When adopting the proposed MGCN-GAN architecture, the different topology updating methods and differnet initializations of learnable combination coefficients of multiple GCNs (theta) can be directly changed in this file, and we have annotated in this file about how to change them. For Linear regression model, we directly called the LinearRegression from sklearn.linear_model package.

Loss_custom.py

The proposed SP loss includes three components: GAN loss, MSE loss and PCC loss. In this file, we implemented the PCC loss. For the MSE loss and GAN loss, we directly called the loss functions from torch.nn module in train.py file. By directly editing train.py file, different loss functions can be chosen, including:

  • GAN Loss
  • MSE+GAN loss
  • PCC+GAN loss
  • SP loss

train.py

You need to run this file to start. All the hyper-parameters can be defined in this file.

Run python ./train.py -atlas='atlas1' -gpu_id=1.

Tested with:

  • PyTorch 1.9.0
  • Python 3.7.0

Data:

We used 1064 subjects from HCP dataset and 132 subjects from ADNI dataset in our research. For each subject, we generated the structural connectivity (SC) and the functional connectivity (FC) matrices. All of the connectivity matrices can be shared for research purpose. Please contact the author to get the data by sending email to [email protected].

Citation:

If you used the code or data of this project, please cite:

@inproceedings{zhang2020recovering,
  title={Recovering brain structural connectivity from functional connectivity via multi-gcn based generative adversarial network},
  author={Zhang, Lu and Wang, Li and Zhu, Dajiang},
  booktitle={International Conference on Medical Image Computing and Computer-Assisted Intervention},
  pages={53--61},
  year={2020},
  organization={Springer}
}
Graph-total-spanning-trees - A Python script to get total number of Spanning Trees in a Graph

Total number of Spanning Trees in a Graph This is a python script just written f

Mehdi I. 0 Jul 18, 2022
Implicit MLE: Backpropagating Through Discrete Exponential Family Distributions

torch-imle Concise and self-contained PyTorch library implementing the I-MLE gradient estimator proposed in our NeurIPS 2021 paper Implicit MLE: Backp

UCL Natural Language Processing 249 Jan 03, 2023
DFM: A Performance Baseline for Deep Feature Matching

DFM: A Performance Baseline for Deep Feature Matching Python (Pytorch) and Matlab (MatConvNet) implementations of our paper DFM: A Performance Baselin

143 Jan 02, 2023
Code for the SIGGRAPH 2022 paper "DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds."

DeltaConv [Paper] [Project page] Code for the SIGGRAPH 2022 paper "DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds" by Ru

98 Nov 26, 2022
Official pytorch code for SSC-GAN: Semi-Supervised Single-Stage Controllable GANs for Conditional Fine-Grained Image Generation(ICCV 2021)

SSC-GAN_repo Pytorch implementation for 'Semi-Supervised Single-Stage Controllable GANs for Conditional Fine-Grained Image Generation'.PDF SSC-GAN:Sem

tyty 4 Aug 28, 2022
CasualHealthcare's Pneumonia detection with Artificial Intelligence (Convolutional Neural Network)

CasualHealthcare's Pneumonia detection with Artificial Intelligence (Convolutional Neural Network) This is PneumoniaDiagnose, an artificially intellig

Azhaan 2 Jan 03, 2022
TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation

TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation Zhaoyun Yin, Pichao Wang, Fan Wang, Xianzhe Xu, Hanling Zhang, Hao Li

DamoCV 25 Dec 16, 2022
The code repository for "PyCIL: A Python Toolbox for Class-Incremental Learning" in PyTorch.

PyCIL: A Python Toolbox for Class-Incremental Learning Introduction • Methods Reproduced • Reproduced Results • How To Use • License • Acknowledgement

Fu-Yun Wang 258 Dec 31, 2022
A tensorflow model that predicts if the image is of a cat or of a dog.

Quick intro Hello and thank you for your interest in my project! This is the backend part of a two-repo application. The other part can be found here

Tudor Matei 0 Mar 08, 2022
learned_optimization: Training and evaluating learned optimizers in JAX

learned_optimization: Training and evaluating learned optimizers in JAX learned_optimization is a research codebase for training learned optimizers. I

Google 533 Dec 30, 2022
Selene is a Python library and command line interface for training deep neural networks from biological sequence data such as genomes.

Selene is a Python library and command line interface for training deep neural networks from biological sequence data such as genomes.

Troyanskaya Laboratory 323 Jan 01, 2023
🦙 LaMa Image Inpainting, Resolution-robust Large Mask Inpainting with Fourier Convolutions, WACV 2022

🦙 LaMa Image Inpainting, Resolution-robust Large Mask Inpainting with Fourier Convolutions, WACV 2022

Advanced Image Manipulation Lab @ Samsung AI Center Moscow 4.7k Dec 31, 2022
Code for Mesh Convolution Using a Learned Kernel Basis

Mesh Convolution This repository contains the implementation (in PyTorch) of the paper FULLY CONVOLUTIONAL MESH AUTOENCODER USING EFFICIENT SPATIALLY

Yi_Zhou 35 Jan 03, 2023
Joint Gaussian Graphical Model Estimation: A Survey

Joint Gaussian Graphical Model Estimation: A Survey Test Models Fused graphical lasso [1] Group graphical lasso [1] Graphical lasso [1] Doubly joint s

Koyejo Lab 1 Aug 10, 2022
A Game-Theoretic Perspective on Risk-Sensitive Reinforcement Learning

Officile code repository for "A Game-Theoretic Perspective on Risk-Sensitive Reinforcement Learning"

Mathieu Godbout 1 Nov 19, 2021
Colossal-AI: A Unified Deep Learning System for Large-Scale Parallel Training

ColossalAI An integrated large-scale model training system with efficient parallelization techniques Installation PyPI pip install colossalai Install

HPC-AI Tech 7.1k Jan 03, 2023
Greedy Gaussian Segmentation

GGS Greedy Gaussian Segmentation (GGS) is a Python solver for efficiently segmenting multivariate time series data. For implementation details, please

Stanford University Convex Optimization Group 72 Dec 07, 2022
[CVPR 2021] Region-aware Adaptive Instance Normalization for Image Harmonization

RainNet — Official Pytorch Implementation Region-aware Adaptive Instance Normalization for Image Harmonization Jun Ling, Han Xue, Li Song*, Rong Xie,

130 Dec 11, 2022
Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering (NAACL 2021)

Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering Abstract In open-domain question answering (QA), retrieve-and-read mec

Clova AI Research 34 Apr 13, 2022
Unsupervised clustering of high content screen samples

Microscopium Unsupervised clustering and dataset exploration for high content screens. See microscopium in action Public dataset BBBC021 from the Broa

60 Dec 05, 2022