nfelo: a power ranking, prediction, and betting model for the NFL

Related tags

Deep Learningnfelo
Overview

nfelo

nfelo is a power ranking, prediction, and betting model for the NFL. Nfelo take's 538's Elo framework and further adapts it for the NFL, hence the name nfelo (pronounced "NFL oh").

The model's output is visualized on nfeloapp.com where you can explore:

Repository Description

This repository contains all the code necessary to translate raw data into weekly predictions. This process has three main phases:

  1. Pull and scrape data from nflfastR, PFF, and various Vegas Line sites
  2. Compile data into a single dataset and run intermediate models (nfelo ratings and wepa)
  3. Translate power ratings and contextual game information into win and line expectations

Install and Use

nfelo is a python package. To install, simply download this repository into your site-packages folder and install the dependencies detailed in the requirements.txt file.

Because nfelo pulls from PFF, running the model requires you to access team grades that are behind a paywall (sorry!), and the PFF scraper does require you to copy your cookie into the config_private.json file. This cookie must be refreshed before each run.

Each phase of the build can be run individually, but to generate predictions, run the following script:

import nfelo

## update data ##
nfelo.pull_nflfastR_pbp()
nfelo.pull_nflfastR_game()
nfelo.pull_nflfastR_roster()
nfelo.pull_nflfastR_logo()
nfelo.pull_538_games()
nfelo.pull_sbr_lines()
nfelo.pull_tfl_lines()
nfelo.pull_pff_grades()

## format ##
nfelo.format_spreads()
nfelo.game_data_merge()

## update models ##
nfelo.calculate_wepa()
nfelo.calculate_nfelo()

## ouput spreads ##
nfelo.calculate_spreads()

This process will output a csv in the output_data folder called 'predictions.csv'

Because this package is exclusively used as a workflow automation for building nfelo predictions each week, it's not well suited for other uses and likely has some bugs if updates are run before every game for a given week has been completed. It does produce nfelo rankings, wepa results, and a few other datapoints, which can be found in various csvs within the folder hierarchy.

Authors

This package is built and maintained by @greerreNFL. Feel free to DM with comments and questions.

Version History

  • 0.1
    • Initial package release
    • Includes nfelo v3.0 and workflow automations to recreate weekly predictions
The reference baseline of final exam for XMU machine learning course

Mini-NICO Baseline The baseline is a reference method for the final exam of machine learning course. Requirements Installation we use /python3.7 /torc

JoaquinChou 3 Dec 29, 2021
Learning Multiresolution Matrix Factorization and its Wavelet Networks on Graphs

Project Learning Multiresolution Matrix Factorization and its Wavelet Networks on Graphs, https://arxiv.org/pdf/2111.01940.pdf. Authors Truong Son Hy

5 Jun 28, 2022
Compare neural networks by their feature similarity

PyTorch Model Compare A tiny package to compare two neural networks in PyTorch. There are many ways to compare two neural networks, but one robust and

Anand Krishnamoorthy 181 Jan 04, 2023
Pynomial - a lightweight python library for implementing the many confidence intervals for the risk parameter of a binomial model

Pynomial - a lightweight python library for implementing the many confidence intervals for the risk parameter of a binomial model

Demetri Pananos 9 Oct 04, 2022
AFLNet: A Greybox Fuzzer for Network Protocols

AFLNet: A Greybox Fuzzer for Network Protocols AFLNet is a greybox fuzzer for protocol implementations. Unlike existing protocol fuzzers, it takes a m

626 Jan 06, 2023
Official implementation of Deep Burst Super-Resolution

Deep-Burst-SR Official implementation of Deep Burst Super-Resolution Publication: Deep Burst Super-Resolution. Goutam Bhat, Martin Danelljan, Luc Van

Goutam Bhat 113 Dec 19, 2022
Uses OpenCV and Python Code to detect a face on the screen

Simple-Face-Detection This code uses OpenCV and Python Code to detect a face on the screen. This serves as an example program. Important prerequisites

Denis Woolley (CreepyD) 1 Feb 12, 2022
a project for 3D multi-object tracking

a project for 3D multi-object tracking

155 Jan 04, 2023
This is the implementation of GGHL (A General Gaussian Heatmap Labeling for Arbitrary-Oriented Object Detection)

GGHL: A General Gaussian Heatmap Labeling for Arbitrary-Oriented Object Detection This is the implementation of GGHL ๐Ÿ‘‹ ๐Ÿ‘‹ ๐Ÿ‘‹ [Arxiv] [Google Drive][B

551 Dec 31, 2022
CVPR2021 Workshop - HDRUNet: Single Image HDR Reconstruction with Denoising and Dequantization.

HDRUNet [Paper Link] HDRUNet: Single Image HDR Reconstruction with Denoising and Dequantization By Xiangyu Chen, Yihao Liu, Zhengwen Zhang, Yu Qiao an

XyChen 105 Dec 20, 2022
TrackTech: Real-time tracking of subjects and objects on multiple cameras

TrackTech: Real-time tracking of subjects and objects on multiple cameras This project is part of the 2021 spring bachelor final project of the Bachel

5 Jun 17, 2022
Official Pytorch and JAX implementation of "Efficient-VDVAE: Less is more"

The Official Pytorch and JAX implementation of "Efficient-VDVAE: Less is more" Arxiv preprint Louay Hazami โ€ƒ ยท โ€ƒ Rayhane Mama โ€ƒ ยท โ€ƒ Ragavan Thurairatn

Rayhane Mama 144 Dec 23, 2022
Self-describing JSON-RPC services made easy

ReflectRPC Self-describing JSON-RPC services made easy Contents What is ReflectRPC? Installation Features Datatypes Custom Datatypes Returning Errors

Andreas Heck 31 Jul 16, 2022
Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21)

Learning Structural Edits via Incremental Tree Transformations Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21) 1.

NeuLab 40 Dec 23, 2022
Motion planning algorithms commonly used on autonomous vehicles. (path planning + path tracking)

Overview This repository implemented some common motion planners used on autonomous vehicles, including Hybrid A* Planner Frenet Optimal Trajectory Hi

Huiming Zhou 1k Jan 09, 2023
Pytorch implementation of "Training a 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet"

Token Labeling: Training an 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet (arxiv) This is a Pytorch implementation of our te

่’‹ๅญ่ˆช 383 Dec 27, 2022
codes for "Scheduled Sampling Based on Decoding Steps for Neural Machine Translation" (long paper of EMNLP-2022)

Scheduled Sampling Based on Decoding Steps for Neural Machine Translation (EMNLP-2021 main conference) Contents Overview Background Quick to Use Furth

Adaxry 13 Jul 25, 2022
An example showing how to use jax to train resnet50 on multi-node multi-GPU

jax-multi-gpu-resnet50-example This repo shows how to use jax for multi-node multi-GPU training. The example is adapted from the resnet50 example in d

Yangzihao Wang 20 Jul 04, 2022
Multi-modal Content Creation Model Training Infrastructure including the FACT model (AI Choreographer) implementation.

AI Choreographer: Music Conditioned 3D Dance Generation with AIST++ [ICCV-2021]. Overview This package contains the model implementation and training

Google Research 365 Dec 30, 2022
[SDM 2022] Towards Similarity-Aware Time-Series Classification

SimTSC This is the PyTorch implementation of SDM2022 paper Towards Similarity-Aware Time-Series Classification. We propose Similarity-Aware Time-Serie

Daochen Zha 49 Dec 27, 2022