The official repo of the CVPR 2021 paper Group Collaborative Learning for Co-Salient Object Detection .

Related tags

Deep LearningGCoNet
Overview

GCoNet

The official repo of the CVPR 2021 paper Group Collaborative Learning for Co-Salient Object Detection .

Trained model

Download final_gconet.pth (Google Drive). And it is the training log.

Put final_gconet.pth at GCoNet/tmp/GCoNet_run1.

Run test.sh for evaluation.

Data Format

Put the DUTS_class (training dataset from GICD), CoCA, CoSOD3k and Cosal2015 datasets to GCoNet/data as the following structure:

GCoNet
   ├── other codes
   ├── ...
   │ 
   └── data
         ├──── images
         |       ├── DUTS_class (DUTS_class's image files)
         |       ├── CoCA (CoCA's image files)
         |       ├── CoSOD3k (CoSOD3k's image files)
         │       └── Cosal2015 (Cosal2015's image files)
         │ 
         └────── gts
                  ├── DUTS_class (DUTS_class's Groundtruth files)
                  ├── CoCA (CoCA's Groundtruth files)
                  ├── CoSOD3k (CoSOD3k's Groundtruth files)
                  └── Cosal2015 (Cosal2015's Groundtruth files)

Usage

Run sh all.sh for training (train_GPU0.sh) and testing (test.sh).

Prediction results

The co-saliency maps of GCoNet can be found at Google Drive.

Note and Discussion

In your training, you can usually obtain slightly worse performance on CoCA dataset and slightly better perofmance on Cosal2015 and CoSOD3k datasets. The performance fluctuation is around 1.0 point for Cosal2015 and CoSOD3k datasets and around 2.0 points for CoCA dataset.

We observed that the results on CoCA dataset are unstable when train the model multiple times, and the performance fluctuation can reach around 1.5 ponits (But our performance are still much better than other methods in the worst case).
Therefore, we provide our used training pairs and sequences with deterministic data augmentation to help you to reproduce our results on CoCA. (In different machines, these inputs and data augmentation are different but deterministic.) However, there is still randomness in the training stage, and you can obtain different performance on CoCA.

There are three possible reasons:

  1. It may be caused by the challenging images of CoCA dataset where the target objects are relative small and there are many non-target objects in a complex environment.
  2. The imperfect training dataset. We use the training dataset in GICD, whose labels are produced by the classification model. There are some noisy labels in the training dataset.
  3. The randomness of training groups. In our training, two groups are randomly picked for training. Different collaborative training groups have different training difficulty.

Possible research directions for performance stability:

  1. Reduce label noise. If you want to use the training dataset in GICD to train your model. It is better to use multiple powerful classification models (ensemble) to obtain better class labels.
  2. Deterministic training groups. For two collaborative image groups, you can explore different ways to pick the suitable groups, e.g., pick two most similar groups for hard example mining.

It is a potential research direction to obtain stable results on such challenging real-world images. We follow other CoSOD methods to report the best performance of our model. You need to train the model multiple times to obtain the best result on CoCA dataset. If you want more discussion about it, you can contact me ([email protected]).

Citation

@inproceedings{fan2021gconet,
title={Group Collaborative Learning for Co-Salient Object Detection},
author={Fan, Qi and Fan, Deng-Ping and Fu, Huazhu and Tang, Chi-Keung and Shao, Ling and Tai, Yu-Wing},
booktitle={CVPR},
year={2021}
}

Acknowledgements

Zhao Zhang gives us lots of helps! Our framework is built on his GICD.

Owner
Qi Fan
Qi Fan
PyKaldi GOP-DNN on Epa-DB

PyKaldi GOP-DNN on Epa-DB This repository has the tools to run a PyKaldi GOP-DNN algorithm on Epa-DB, a database of non-native English speech by Spani

18 Dec 14, 2022
Inkscape extensions for figure resizing and editing

Academic-Inkscape: Extensions for figure resizing and editing This repository contains several Inkscape extensions designed for editing plots. Scale P

192 Dec 26, 2022
Code release for "Transferable Semantic Augmentation for Domain Adaptation" (CVPR 2021)

Transferable Semantic Augmentation for Domain Adaptation Code release for "Transferable Semantic Augmentation for Domain Adaptation" (CVPR 2021) Paper

66 Dec 16, 2022
Non-Vacuous Generalisation Bounds for Shallow Neural Networks

This package requires jax, tensorflow, and numpy. Either tensorflow or scikit-learn can be used for loading data. To run in a nix-shell with required

Felix Biggs 0 Feb 04, 2022
RobustVideoMatting and background composing in one model by using onnxruntime.

RVM_onnx_compose RobustVideoMatting and background composing in one model by using onnxruntime. Usage pip install -r requirements.txt python infer_cam

Quantum Liu 4 Apr 07, 2022
Recurrent Scale Approximation (RSA) for Object Detection

Recurrent Scale Approximation (RSA) for Object Detection Codebase for Recurrent Scale Approximation for Object Detection in CNN published at ICCV 2017

Yu Liu (Louis) 239 Dec 28, 2022
TorchDistiller - a collection of the open source pytorch code for knowledge distillation, especially for the perception tasks, including semantic segmentation, depth estimation, object detection and instance segmentation.

This project is a collection of the open source pytorch code for knowledge distillation, especially for the perception tasks, including semantic segmentation, depth estimation, object detection and i

yifan liu 147 Dec 03, 2022
Code for the ECCV2020 paper "A Differentiable Recurrent Surface for Asynchronous Event-Based Data"

A Differentiable Recurrent Surface for Asynchronous Event-Based Data Code for the ECCV2020 paper "A Differentiable Recurrent Surface for Asynchronous

Marco Cannici 21 Oct 05, 2022
More than a hundred strange attractors

dysts Analyze more than a hundred chaotic systems. Basic Usage Import a model and run a simulation with default initial conditions and parameter value

William Gilpin 185 Dec 23, 2022
A hue shift helper for OBS

obs-hue-shift A hue shift helper for OBS This is a repo based on the really nice script Hegemege made. The original script can be found https://gist.g

Alexis Tyler 1 Jan 10, 2022
Official implementation of deep-multi-trajectory-based single object tracking (IEEE T-CSVT 2021).

DeepMTA_PyTorch Officical PyTorch Implementation of "Dynamic Attention-guided Multi-TrajectoryAnalysis for Single Object Tracking", Xiao Wang, Zhe Che

Xiao Wang(王逍) 7 Dec 03, 2022
[ICCV'21] Pri3D: Can 3D Priors Help 2D Representation Learning?

Pri3D: Can 3D Priors Help 2D Representation Learning? [ICCV 2021] Pri3D leverages 3D priors for downstream 2D image understanding tasks: during pre-tr

Ji Hou 124 Jan 06, 2023
Towards Part-Based Understanding of RGB-D Scans

Towards Part-Based Understanding of RGB-D Scans (CVPR 2021) We propose the task of part-based scene understanding of real-world 3D environments: from

26 Nov 23, 2022
💛 Code and Dataset for our EMNLP 2021 paper: "Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes"

Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes Official PyTorch implementation and EmoCause evaluatio

Hyunwoo Kim 51 Jan 06, 2023
An extremely simple, intuitive, hardware-friendly, and well-performing network structure for LiDAR semantic segmentation on 2D range image. IROS21

FIDNet_SemanticKITTI Motivation Implementing complicated network modules with only one or two points improvement on hardware is tedious. So here we pr

YimingZhao 54 Dec 12, 2022
Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer

ConSERT Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer Requirements torch==1.6.0

Yan Yuanmeng 478 Dec 25, 2022
Efficient Sharpness-aware Minimization for Improved Training of Neural Networks

Efficient Sharpness-aware Minimization for Improved Training of Neural Networks Code for “Efficient Sharpness-aware Minimization for Improved Training

Angusdu 32 Oct 18, 2022
Official PaddlePaddle implementation of Paint Transformer

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [Paddle Implementation] Update We have optimized the serial inference p

TianweiLin 284 Dec 31, 2022
Collect some papers about transformer with vision. Awesome Transformer with Computer Vision (CV)

Awesome Visual-Transformer Collect some Transformer with Computer-Vision (CV) papers. If you find some overlooked papers, please open issues or pull r

dkliang 2.8k Jan 08, 2023
Visualizing lattice vibration information from phonon dispersion to atoms (For GPUMD)

Phonon-Vibration-Viewer (For GPUMD) Visualizing lattice vibration information from phonon dispersion for primitive atoms. In this tutorial, we will in

Liangting 6 Dec 10, 2022