End-To-End Memory Network using Tensorflow

Overview

MemN2N

Implementation of End-To-End Memory Networks with sklearn-like interface using Tensorflow. Tasks are from the bAbl dataset.

MemN2N picture

Get Started

git clone [email protected]:domluna/memn2n.git

mkdir ./memn2n/data/
cd ./memn2n/data/
wget http://www.thespermwhale.com/jaseweston/babi/tasks_1-20_v1-2.tar.gz
tar xzvf ./tasks_1-20_v1-2.tar.gz

cd ../
python single.py

Examples

Running a single bAbI task

Running a joint model on all bAbI tasks

These files are also a good example of usage.

Requirements

  • tensorflow 1.0
  • scikit-learn 0.17.1
  • six 1.10.0

Single Task Results

For a task to pass it has to meet 95%+ testing accuracy. Measured on single tasks on the 1k data.

Pass: 1,4,12,15,20

Several other tasks have 80%+ testing accuracy.

Stochastic gradient descent optimizer was used with an annealed learning rate schedule as specified in Section 4.2 of End-To-End Memory Networks

The following params were used:

  • epochs: 100
  • hops: 3
  • embedding_size: 20
Task Training Accuracy Validation Accuracy Testing Accuracy
1 1.0 1.0 1.0
2 1.0 0.86 0.83
3 1.0 0.64 0.54
4 1.0 0.99 0.98
5 1.0 0.94 0.87
6 1.0 0.97 0.92
7 1.0 0.89 0.84
8 1.0 0.93 0.86
9 1.0 0.86 0.90
10 1.0 0.80 0.78
11 1.0 0.92 0.84
12 1.0 1.0 1.0
13 0.99 0.94 0.90
14 1.0 0.97 0.93
15 1.0 1.0 1.0
16 0.81 0.47 0.44
17 0.76 0.65 0.52
18 0.97 0.96 0.88
19 0.40 0.17 0.13
20 1.0 1.0 1.0

Joint Training Results

Pass: 1,6,9,10,12,13,15,20

Again stochastic gradient descent optimizer was used with an annealed learning rate schedule as specified in Section 4.2 of End-To-End Memory Networks

The following params were used:

  • epochs: 60
  • hops: 3
  • embedding_size: 40
Task Training Accuracy Validation Accuracy Testing Accuracy
1 1.0 0.99 0.999
2 1.0 0.84 0.849
3 0.99 0.72 0.715
4 0.96 0.86 0.851
5 1.0 0.92 0.865
6 1.0 0.97 0.964
7 0.96 0.87 0.851
8 0.99 0.89 0.898
9 0.99 0.96 0.96
10 1.0 0.96 0.928
11 1.0 0.98 0.93
12 1.0 0.98 0.982
13 0.99 0.98 0.976
14 1.0 0.81 0.877
15 1.0 1.0 0.983
16 0.64 0.45 0.44
17 0.77 0.64 0.547
18 0.85 0.71 0.586
19 0.24 0.07 0.104
20 1.0 1.0 0.996

Notes

Single task results are from 10 repeated trails of the single task model accross all 20 tasks with different random initializations. The performance of the model with the lowest validation accuracy for each task is shown in the table above.

Joint training results are from 10 repeated trails of the joint model accross all tasks. The performance of the single model whose validation accuracy passed the most tasks (>= 0.95) is shown in the table above (joint_scores_run2.csv). The scores from all 10 runs are located in the results/ directory.

Owner
Dominique Luna
magnificent stallion
Dominique Luna
Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression.

Spatio-Temporal Entropy Model A Pytorch Reproduction of Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression. More details can

16 Nov 28, 2022
PINN(s): Physics-Informed Neural Network(s) for von Karman vortex street

PINN(s): Physics-Informed Neural Network(s) for von Karman vortex street This is

ShotaDEGUCHI 2 Apr 18, 2022
This repository collects 100 papers related to negative sampling methods.

Negative-Sampling-Paper This repository collects 100 papers related to negative sampling methods, covering multiple research fields such as Recommenda

RUCAIBox 119 Dec 29, 2022
Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt)

Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt) Task Training huge unsupervised deep neural networks yields to strong progress in

2 Aug 05, 2022
Relative Uncertainty Learning for Facial Expression Recognition

Relative Uncertainty Learning for Facial Expression Recognition The official implementation of the following paper at NeurIPS2021: Title: Relative Unc

35 Dec 28, 2022
For IBM Quantum Challenge 2021 (May 20 - 26)

IBM Quantum Challenge 2021 Introduction Commemorating the 40-year anniversary of the Physics of Computation conference, and 5-year anniversary of IBM

Qiskit Community 140 Jan 01, 2023
Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.

Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.

Ibai Gorordo 35 Sep 07, 2022
Code of paper Interact, Embed, and EnlargE (IEEE): Boosting Modality-specific Representations for Multi-Modal Person Re-identification.

Interact, Embed, and EnlargE (IEEE): Boosting Modality-specific Representations for Multi-Modal Person Re-identification We provide the codes for repr

12 Dec 12, 2022
PartImageNet is a large, high-quality dataset with part segmentation annotations

PartImageNet: A Large, High-Quality Dataset of Parts We will release our dataset and scripts soon after cleaning and approval. Introduction PartImageN

Ju He 77 Nov 30, 2022
MMGeneration is a powerful toolkit for generative models, based on PyTorch and MMCV.

Documentation: https://mmgeneration.readthedocs.io/ Introduction English | 简体中文 MMGeneration is a powerful toolkit for generative models, especially f

OpenMMLab 1.3k Dec 29, 2022
Contrastive Learning of Image Representations with Cross-Video Cycle-Consistency

Contrastive Learning of Image Representations with Cross-Video Cycle-Consistency This is a official implementation of the CycleContrast introduced in

13 Nov 14, 2022
Baseline inference Algorithm for the STOIC2021 challenge.

STOIC2021 Baseline Algorithm This codebase contains an example submission for the STOIC2021 COVID-19 AI Challenge. As a baseline algorithm, it impleme

Luuk Boulogne 10 Aug 08, 2022
Official pytorch implementation of paper Dual-Level Collaborative Transformer for Image Captioning (AAAI 2021).

Dual-Level Collaborative Transformer for Image Captioning This repository contains the reference code for the paper Dual-Level Collaborative Transform

lyricpoem 160 Dec 11, 2022
Minimalistic PyTorch training loop

Backbone for PyTorch training loop Will try to keep it minimalistic. pip install back from back import Bone Features Progress bar Checkpoints saving/l

Kashin 4 Jan 16, 2020
[EMNLP 2021] MuVER: Improving First-Stage Entity Retrieval with Multi-View Entity Representations

MuVER This repo contains the code and pre-trained model for our EMNLP 2021 paper: MuVER: Improving First-Stage Entity Retrieval with Multi-View Entity

24 May 30, 2022
Mall-Customers-Segmentation - Customer Segmentation Using K-Means Clustering

Overview Customer Segmentation is one the most important applications of unsupervised learning. Using clustering techniques, companies can identify th

NelakurthiSudheer 2 Jan 03, 2022
MARS: Learning Modality-Agnostic Representation for Scalable Cross-media Retrieva

Introduction This is the source code of our TCSVT 2021 paper "MARS: Learning Modality-Agnostic Representation for Scalable Cross-media Retrieval". Ple

7 Aug 24, 2022
PyTorch implementation for the paper Pseudo Numerical Methods for Diffusion Models on Manifolds

Pseudo Numerical Methods for Diffusion Models on Manifolds (PNDM) This repo is the official PyTorch implementation for the paper Pseudo Numerical Meth

Luping Liu (刘路平) 196 Jan 05, 2023
A collection of loss functions for medical image segmentation

A collection of loss functions for medical image segmentation

Jun 3.1k Jan 03, 2023
🌳 A Python-inspired implementation of the Optimum-Path Forest classifier.

OPFython: A Python-Inspired Optimum-Path Forest Classifier Welcome to OPFython. Note that this implementation relies purely on the standard LibOPF. Th

Gustavo Rosa 30 Jan 04, 2023