Incomplete easy-to-use math solver and PDF generator.

Overview

Math Expert

Let me do your work

Preview

preview.mp4

Introduction

Math Expert is our (@salastro, @younis-tarek, @marawn-mogeb) math high school graduation project. The project tackles the problem of generating beautiful, quick, and useful mathematics. While most software can either only generate beautiful formatted PDF (i.e. LaTeX) or sufficiently solve mathematical problems (e.g. Wolfram|Alpha). There may be, however, alternatives to these tools, yet they can not fully grasp the potential of either of them or are slow and hard to use. Therefore, this project tries to do what others failed.

Inner Workings

Our approach was to create an easy-to-use graphical user interface (GUI) that uses different components to reach our goal. LaTeX is the main PDF generation backend due to its indubitable abilities and speed; it is the universal standard for mathematical notation. However, it is reasonably hard to use making it difficult to use in a short-term practical context. This makes the application even more useful. It was mainly interacted with through PyLaTeX; it provides a usable set of commands that make use of LaTeX's capabilities. The standard article document class with numbered math alignment environment and TikZ drawings was used.

Although both SymPy and NumPy were used, the focus was on SymPy due to its nature of symbolic manipulation and its alignment with the goals of the project. The latter is powerful in mathematical evaluations, which — although supported — is not the focus of this project. The results of all functions, other than Evaluate, are performed through SymPy. It provides more than one function to perform some of the operations at hand, but the one that proves to be the most effective is used. For example, there are integrate and manualintegrate, and although the latter can show steps (non-human-readable), the former was chosen for its wide variety of solutions.

Unlike the previous two, the choice of a GUI framework was not a straightforward decision. Kivy was a serious candidate, but due to its own unique syntax for designing being its bedrock and lack of some convenient Python capabilities use, it was not feasible. Another option was Tkinter, which is considered the main framework for Python. However, it is very lacking some modern UI design features and is not plain sailing in some considerable aspects. The final option was PyQt5, which is a Python binding for the Qt cross-platform framework. Basically utilizing all of the powerful aspects of the Qt framework, which avoids the aforementioned limitations, while maintaining a usable toolkit. A highly programmable interface that is easily integrable into other environments was the product of this decision.

Philosophy

Although the infamous it just works are spread throughout the codebase, which is not ideal for a structured project, the goal of our is to define a great code that follows best practices (e.g. PEP 8) to have a readable, maintainable, and legacy-free codebase to stand in the way of passing time for the longest. As such, a minimal amount of code is necessary to avoid using breakable functions; a suitable modus operandi is the suckless philosophy. On the other hand, extensibility and customizability are as important. Unix philosophy is the one method that is well-regarded as the jewel in the crown.

Object orientation was used due to its inheritance, encapsulation, and other proprieties; some of which can not be achieved through modularity alone resulting in a more complex codebase. In addition, the structural way PyLaTeX handles documents would make it even harder to avoid object-oriented programming, despite its known disadvantages. However, parts of SymPy and NumPy code were written more procedurally.

Codebase

As mentioned above, the goals of the code are minimalism, functionality, extensibility, and customizability. The program is divided into 3 separate files: gui.py for all of the UI elements, func.py for all the operations on documents, and main.py for the main program and linking of the two. This was to ease the switching of undesired modules and separate development based on the working context.

func.py was mainly structured as one class (MathDoc) with multiple methods for document manipulation (e.g. Inte, Diff, etc). The class is instantiated and used in main.py in the __name__ == "__main__" if statement after the imports outside the conditional; on every button click the corresponding method is called. In contrast, explicit mentions of gui.py are rare (besides the linkage ones) since all of its handlings is in the file itself.

Properties

Advantages

  • Easy-to-use
  • Fast
  • Accurate
  • Concise Formatting
  • Extensible
  • Programmable

Disadvantages

  • poor error handling
  • limited syntax input
  • limited operations
  • no-preview before add
  • undoable actions

Neutral

  • Unappealing UI
  • No indication when unsolvable

Future plans

See issues

Usage

Although the interface is obvious, some clarifications may need to be made.

  • First text input is the file name without extension
  • Second text input is the document title
  • Third text input is the author(s) title
  • Fourth (and last) text input is the mathematical expression to be operated on
    • Euler's number should be written as exp(x) instead of e^(x)
    • log is the natural logarithm.
    • Multiplication should be written in the form 2*x
  • After defining all the previous inputs, click Generate PDF
  • Choose the type of operation you want to perform, then click Generate PDF again

Dependences

Building

Running

COCOMO estimates

Using scc

───────────────────────────────────────────────────────────────────────────────
Language                 Files     Lines   Blanks  Comments     Code Complexity
───────────────────────────────────────────────────────────────────────────────
Python                       4       465       36        24      405         17
───────────────────────────────────────────────────────────────────────────────
Total                        4       465       36        24      405         17
───────────────────────────────────────────────────────────────────────────────
Estimated Cost to Develop (organic) $10,457
Estimated Schedule Effort (organic) 2.431055 months
Estimated People Required (organic) 0.382159
───────────────────────────────────────────────────────────────────────────────
Processed 19228 bytes, 0.019 megabytes (SI)
───────────────────────────────────────────────────────────────────────────────
Comments
  • Better logs

    Better logs

    They look ugly and increase loc with a lot of repetition. I am not used to using it so it will take me some time until I discover how to get around the logs.

    enhancement 
    opened by salastro 2
  • Code refactoring

    Code refactoring

    Some aspects of the code are written badly.

    For reference:

    • https://stackoverflow.com/questions/20873259/pyqt-how-to-dynamically-update-widget-property-on-outer-variable-value-change
    enhancement 
    opened by salastro 2
  • Automated tests

    Automated tests

    They basically exist in the __main__ in func.py For reference:

    • https://www.youtube.com/watch?v=DhUpxWjOhME
    • https://stackoverflow.com/questions/27954702/unittest-vs-pytest
    • https://docs.python.org/3/library/unittest.html
    • https://docs.pytest.org/
    enhancement 
    opened by salastro 1
  • Better define methods in `main.py`

    Better define methods in `main.py`

    Currently, exec is used, which is very unpythonic and inefficient. There should be a way to get all the functions in the func.py and link them accordingly.

        operations = ["inte", "diff", "lim", "fact", "sol",
                      "simp", "eval", "plot", "generate_pdf", "generate_latex"]
    
        for func in operations:
            exec(f"""
                \[email protected]()
                \ndef on_{func}_bt_clicked(self):
                \n    self.mathdoc.{func}(self.expression.toPlainText().\
                    replace(" ", ""))
            """)
    
    bug 
    opened by salastro 1
  • Show steps

    Show steps

    Since the functions that do not operate on a human level are more advanced in solving problems, it would be great if it is possible to check if the problem is solvable with human steps and then use the function that shows the results. Mainly integration and differentiation are my concern.

    enhancement 
    opened by salastro 0
  • Integration hangs

    Integration hangs

    Sometimes when integration is unsolvable (even by other more advanced calculators) it just halts.

    Possible solutions are:

    • restricting the computational resources of the process
    • adding a timeout (e.g. of 10 seconds) for the process
    • creating an external watchdog for the management of the program flow
    bug 
    opened by salastro 1
  • LaTeX dependency

    LaTeX dependency

    Tests on my machine went smoothly on both Linux and Windows. However, it was not as smooth for both @marawan-mogeb and @younis-tarek. The only unique thing in my setup on both OSs is having LaTeX (texlive-full on void Linux and MikTeX on Windows) while both do not. The size of a TeX distro is yet to be confirmed, but since there is no advanced PDF formatting (e.g. Arabic support) TinyTeX should work. @younis-tarek plans to further test this in the future.

    bug documentation 
    opened by salastro 2
Releases(0.2)
Owner
SalahDin Ahmed
A computers magician who uses simple spells.
SalahDin Ahmed
COVID-Net Open Source Initiative

The COVID-Net models provided here are intended to be used as reference models that can be built upon and enhanced as new data becomes available

Linda Wang 1.1k Dec 26, 2022
Hepsiburada - Hepsiburada Urun Bilgisi Cekme

Hepsiburada Urun Bilgisi Cekme from hepsiburada import Marka nike = Marka("nike"

Ilker Manap 8 Oct 26, 2022
CS5242_2021 - Neural Networks and Deep Learning, NUS CS5242, 2021

CS5242_2021 Neural Networks and Deep Learning, NUS CS5242, 2021 Cloud Machine #1 : Google Colab (Free GPU) Follow this Notebook installation : https:/

Xavier Bresson 165 Oct 25, 2022
Deep-Learning-Book-Chapter-Summaries - Attempting to make the Deep Learning Book easier to understand.

Deep-Learning-Book-Chapter-Summaries This repository provides a summary for each chapter of the Deep Learning book by Ian Goodfellow, Yoshua Bengio an

Aman Dalmia 1k Dec 27, 2022
Neural Scene Graphs for Dynamic Scene (CVPR 2021)

Implementation of Neural Scene Graphs, that optimizes multiple radiance fields to represent different objects and a static scene background. Learned representations can be rendered with novel object

151 Dec 26, 2022
AI Toolkit for Healthcare Imaging

Medical Open Network for AI MONAI is a PyTorch-based, open-source framework for deep learning in healthcare imaging, part of PyTorch Ecosystem. Its am

Project MONAI 3.7k Jan 07, 2023
Official implementation of the ICCV 2021 paper: "The Power of Points for Modeling Humans in Clothing".

The Power of Points for Modeling Humans in Clothing (ICCV 2021) This repository contains the official PyTorch implementation of the ICCV 2021 paper: T

Qianli Ma 158 Nov 24, 2022
AttentionGAN for Unpaired Image-to-Image Translation & Multi-Domain Image-to-Image Translation

AttentionGAN-v2 for Unpaired Image-to-Image Translation AttentionGAN-v2 Framework The proposed generator learns both foreground and background attenti

Hao Tang 530 Dec 27, 2022
Open-sourcing the Slates Dataset for recommender systems research

FINN.no Recommender Systems Slate Dataset This repository accompany the paper "Dynamic Slate Recommendation with Gated Recurrent Units and Thompson Sa

FINN.no 48 Nov 28, 2022
《Image2Reverb: Cross-Modal Reverb Impulse Response Synthesis》(2021)

Image2Reverb Image2Reverb is an end-to-end neural network that generates plausible audio impulse responses from single images of acoustic environments

Nikhil Singh 48 Nov 27, 2022
PyTorch-lightning implementation of the ESFW module proposed in our paper Edge-Selective Feature Weaving for Point Cloud Matching

Edge-Selective Feature Weaving for Point Cloud Matching This repository contains a PyTorch-lightning implementation of the ESFW module proposed in our

5 Feb 14, 2022
Implementation of Sequence Generative Adversarial Nets with Policy Gradient

SeqGAN Requirements: Tensorflow r1.0.1 Python 2.7 CUDA 7.5+ (For GPU) Introduction Apply Generative Adversarial Nets to generating sequences of discre

Lantao Yu 2k Dec 29, 2022
HyDiff: Hybrid Differential Software Analysis

HyDiff: Hybrid Differential Software Analysis This repository provides the tool and the evaluation subjects for the paper HyDiff: Hybrid Differential

Yannic Noller 22 Oct 20, 2022
Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification (NeurIPS 2021)

Graph Posterior Network This is the official code repository to the paper Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classifica

Maximilian Stadler 30 Dec 05, 2022
RefineGNN - Iterative refinement graph neural network for antibody sequence-structure co-design (RefineGNN)

Iterative refinement graph neural network for antibody sequence-structure co-des

Wengong Jin 83 Dec 31, 2022
Partial implementation of ODE-GAN technique from the paper Training Generative Adversarial Networks by Solving Ordinary Differential Equations

ODE GAN (Prototype) in PyTorch Partial implementation of ODE-GAN technique from the paper Training Generative Adversarial Networks by Solving Ordinary

Somshubra Majumdar 15 Feb 10, 2022
UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac protocols on unmanned aerial vehicle networks.

UAV-Networks Simulator - Autonomous Networking - A.A. 20/21 UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac pr

0 Nov 13, 2021
A Tensorflow implementation of BicycleGAN.

BicycleGAN implementation in Tensorflow As part of the implementation series of Joseph Lim's group at USC, our motivation is to accelerate (or sometim

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 97 Dec 02, 2022
Pocsploit is a lightweight, flexible and novel open source poc verification framework

Pocsploit is a lightweight, flexible and novel open source poc verification framework

cckuailong 208 Dec 24, 2022
A benchmark for the task of translation suggestion

WeTS: A Benchmark for Translation Suggestion Translation Suggestion (TS), which provides alternatives for specific words or phrases given the entire d

zhyang 55 Dec 24, 2022