Incomplete easy-to-use math solver and PDF generator.

Overview

Math Expert

Let me do your work

Preview

preview.mp4

Introduction

Math Expert is our (@salastro, @younis-tarek, @marawn-mogeb) math high school graduation project. The project tackles the problem of generating beautiful, quick, and useful mathematics. While most software can either only generate beautiful formatted PDF (i.e. LaTeX) or sufficiently solve mathematical problems (e.g. Wolfram|Alpha). There may be, however, alternatives to these tools, yet they can not fully grasp the potential of either of them or are slow and hard to use. Therefore, this project tries to do what others failed.

Inner Workings

Our approach was to create an easy-to-use graphical user interface (GUI) that uses different components to reach our goal. LaTeX is the main PDF generation backend due to its indubitable abilities and speed; it is the universal standard for mathematical notation. However, it is reasonably hard to use making it difficult to use in a short-term practical context. This makes the application even more useful. It was mainly interacted with through PyLaTeX; it provides a usable set of commands that make use of LaTeX's capabilities. The standard article document class with numbered math alignment environment and TikZ drawings was used.

Although both SymPy and NumPy were used, the focus was on SymPy due to its nature of symbolic manipulation and its alignment with the goals of the project. The latter is powerful in mathematical evaluations, which — although supported — is not the focus of this project. The results of all functions, other than Evaluate, are performed through SymPy. It provides more than one function to perform some of the operations at hand, but the one that proves to be the most effective is used. For example, there are integrate and manualintegrate, and although the latter can show steps (non-human-readable), the former was chosen for its wide variety of solutions.

Unlike the previous two, the choice of a GUI framework was not a straightforward decision. Kivy was a serious candidate, but due to its own unique syntax for designing being its bedrock and lack of some convenient Python capabilities use, it was not feasible. Another option was Tkinter, which is considered the main framework for Python. However, it is very lacking some modern UI design features and is not plain sailing in some considerable aspects. The final option was PyQt5, which is a Python binding for the Qt cross-platform framework. Basically utilizing all of the powerful aspects of the Qt framework, which avoids the aforementioned limitations, while maintaining a usable toolkit. A highly programmable interface that is easily integrable into other environments was the product of this decision.

Philosophy

Although the infamous it just works are spread throughout the codebase, which is not ideal for a structured project, the goal of our is to define a great code that follows best practices (e.g. PEP 8) to have a readable, maintainable, and legacy-free codebase to stand in the way of passing time for the longest. As such, a minimal amount of code is necessary to avoid using breakable functions; a suitable modus operandi is the suckless philosophy. On the other hand, extensibility and customizability are as important. Unix philosophy is the one method that is well-regarded as the jewel in the crown.

Object orientation was used due to its inheritance, encapsulation, and other proprieties; some of which can not be achieved through modularity alone resulting in a more complex codebase. In addition, the structural way PyLaTeX handles documents would make it even harder to avoid object-oriented programming, despite its known disadvantages. However, parts of SymPy and NumPy code were written more procedurally.

Codebase

As mentioned above, the goals of the code are minimalism, functionality, extensibility, and customizability. The program is divided into 3 separate files: gui.py for all of the UI elements, func.py for all the operations on documents, and main.py for the main program and linking of the two. This was to ease the switching of undesired modules and separate development based on the working context.

func.py was mainly structured as one class (MathDoc) with multiple methods for document manipulation (e.g. Inte, Diff, etc). The class is instantiated and used in main.py in the __name__ == "__main__" if statement after the imports outside the conditional; on every button click the corresponding method is called. In contrast, explicit mentions of gui.py are rare (besides the linkage ones) since all of its handlings is in the file itself.

Properties

Advantages

  • Easy-to-use
  • Fast
  • Accurate
  • Concise Formatting
  • Extensible
  • Programmable

Disadvantages

  • poor error handling
  • limited syntax input
  • limited operations
  • no-preview before add
  • undoable actions

Neutral

  • Unappealing UI
  • No indication when unsolvable

Future plans

See issues

Usage

Although the interface is obvious, some clarifications may need to be made.

  • First text input is the file name without extension
  • Second text input is the document title
  • Third text input is the author(s) title
  • Fourth (and last) text input is the mathematical expression to be operated on
    • Euler's number should be written as exp(x) instead of e^(x)
    • log is the natural logarithm.
    • Multiplication should be written in the form 2*x
  • After defining all the previous inputs, click Generate PDF
  • Choose the type of operation you want to perform, then click Generate PDF again

Dependences

Building

Running

COCOMO estimates

Using scc

───────────────────────────────────────────────────────────────────────────────
Language                 Files     Lines   Blanks  Comments     Code Complexity
───────────────────────────────────────────────────────────────────────────────
Python                       4       465       36        24      405         17
───────────────────────────────────────────────────────────────────────────────
Total                        4       465       36        24      405         17
───────────────────────────────────────────────────────────────────────────────
Estimated Cost to Develop (organic) $10,457
Estimated Schedule Effort (organic) 2.431055 months
Estimated People Required (organic) 0.382159
───────────────────────────────────────────────────────────────────────────────
Processed 19228 bytes, 0.019 megabytes (SI)
───────────────────────────────────────────────────────────────────────────────
Comments
  • Better logs

    Better logs

    They look ugly and increase loc with a lot of repetition. I am not used to using it so it will take me some time until I discover how to get around the logs.

    enhancement 
    opened by salastro 2
  • Code refactoring

    Code refactoring

    Some aspects of the code are written badly.

    For reference:

    • https://stackoverflow.com/questions/20873259/pyqt-how-to-dynamically-update-widget-property-on-outer-variable-value-change
    enhancement 
    opened by salastro 2
  • Automated tests

    Automated tests

    They basically exist in the __main__ in func.py For reference:

    • https://www.youtube.com/watch?v=DhUpxWjOhME
    • https://stackoverflow.com/questions/27954702/unittest-vs-pytest
    • https://docs.python.org/3/library/unittest.html
    • https://docs.pytest.org/
    enhancement 
    opened by salastro 1
  • Better define methods in `main.py`

    Better define methods in `main.py`

    Currently, exec is used, which is very unpythonic and inefficient. There should be a way to get all the functions in the func.py and link them accordingly.

        operations = ["inte", "diff", "lim", "fact", "sol",
                      "simp", "eval", "plot", "generate_pdf", "generate_latex"]
    
        for func in operations:
            exec(f"""
                \[email protected]()
                \ndef on_{func}_bt_clicked(self):
                \n    self.mathdoc.{func}(self.expression.toPlainText().\
                    replace(" ", ""))
            """)
    
    bug 
    opened by salastro 1
  • Show steps

    Show steps

    Since the functions that do not operate on a human level are more advanced in solving problems, it would be great if it is possible to check if the problem is solvable with human steps and then use the function that shows the results. Mainly integration and differentiation are my concern.

    enhancement 
    opened by salastro 0
  • Integration hangs

    Integration hangs

    Sometimes when integration is unsolvable (even by other more advanced calculators) it just halts.

    Possible solutions are:

    • restricting the computational resources of the process
    • adding a timeout (e.g. of 10 seconds) for the process
    • creating an external watchdog for the management of the program flow
    bug 
    opened by salastro 1
  • LaTeX dependency

    LaTeX dependency

    Tests on my machine went smoothly on both Linux and Windows. However, it was not as smooth for both @marawan-mogeb and @younis-tarek. The only unique thing in my setup on both OSs is having LaTeX (texlive-full on void Linux and MikTeX on Windows) while both do not. The size of a TeX distro is yet to be confirmed, but since there is no advanced PDF formatting (e.g. Arabic support) TinyTeX should work. @younis-tarek plans to further test this in the future.

    bug documentation 
    opened by salastro 2
Releases(0.2)
Owner
SalahDin Ahmed
A computers magician who uses simple spells.
SalahDin Ahmed
The official PyTorch implementation for the paper "sMGC: A Complex-Valued Graph Convolutional Network via Magnetic Laplacian for Directed Graphs".

Magnetic Graph Convolutional Networks About The official PyTorch implementation for the paper sMGC: A Complex-Valued Graph Convolutional Network via M

3 Feb 25, 2022
Deep Markov Factor Analysis (NeurIPS2021)

Deep Markov Factor Analysis (DMFA) Codes and experiments for deep Markov factor analysis (DMFA) model accepted for publication at NeurIPS2021: A. Farn

Sarah Ostadabbas 2 Dec 16, 2022
Differentiable Neural Computers, Sparse Access Memory and Sparse Differentiable Neural Computers, for Pytorch

Differentiable Neural Computers and family, for Pytorch Includes: Differentiable Neural Computers (DNC) Sparse Access Memory (SAM) Sparse Differentiab

ixaxaar 302 Dec 14, 2022
Research code of ICCV 2021 paper "Mesh Graphormer"

MeshGraphormer ✨ ✨ This is our research code of Mesh Graphormer. Mesh Graphormer is a new transformer-based method for human pose and mesh reconsructi

Microsoft 251 Jan 08, 2023
Tensorflow implementation for Self-supervised Graph Learning for Recommendation

If the compilation is successful, the evaluator of cpp implementation will be called automatically. Otherwise, the evaluator of python implementation will be called.

152 Jan 07, 2023
P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks

P-tuning v2 P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks An optimized prompt tuning strategy achievi

THUDM 540 Dec 30, 2022
Experiments with the Robust Binary Interval Search (RBIS) algorithm, a Query-Based prediction algorithm for the Online Search problem.

OnlineSearchRBIS Online Search with Best-Price and Query-Based Predictions This is the implementation of the Robust Binary Interval Search (RBIS) algo

S. K. 1 Apr 16, 2022
Public repository of the 3DV 2021 paper "Generative Zero-Shot Learning for Semantic Segmentation of 3D Point Clouds"

Generative Zero-Shot Learning for Semantic Segmentation of 3D Point Clouds Björn Michele1), Alexandre Boulch1), Gilles Puy1), Maxime Bucher1) and Rena

valeo.ai 15 Dec 22, 2022
Solutions and questions for AoC2021. Merry christmas!

Advent of Code 2021 Merry christmas! 🎄 🎅 To get solutions and approximate execution times for implementations, please execute the run.py script in t

Wilhelm Ågren 5 Dec 29, 2022
Pytorch code for "State-only Imitation with Transition Dynamics Mismatch" (ICLR 2020)

This repo contains code for our paper State-only Imitation with Transition Dynamics Mismatch published at ICLR 2020. The code heavily uses the RL mach

20 Sep 08, 2022
DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision

The Official PyTorch Implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision

Shiyi Lan 3 Oct 15, 2021
Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity

[ICLR 2022] Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity by Shiwei Liu, Tianlong Chen, Zahra Atashgahi, Xiaohan Chen, Ghada Sokar, Elen

VITA 18 Dec 31, 2022
This repo is customed for VisDrone.

Object Detection for VisDrone(无人机航拍图像目标检测) My environment 1、Windows10 (Linux available) 2、tensorflow = 1.12.0 3、python3.6 (anaconda) 4、cv2 5、ensemble

53 Jul 17, 2022
Deep Learning Training Scripts With Python

Deep Learning Training Scripts DNN Frameworks Caffe PyTorch Tensorflow CNN Models VGG ResNet DenseNet Inception Language Modeling GatedCNN-LM Attentio

Multicore Computing Research Lab 16 Dec 15, 2022
This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression problems

Doctoral dissertation of Zheng Zhao This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression pro

Zheng Zhao 21 Nov 14, 2022
An original implementation of "MetaICL Learning to Learn In Context" by Sewon Min, Mike Lewis, Luke Zettlemoyer and Hannaneh Hajishirzi

MetaICL: Learning to Learn In Context This includes an original implementation of "MetaICL: Learning to Learn In Context" by Sewon Min, Mike Lewis, Lu

Meta Research 141 Jan 07, 2023
Abstractive opinion summarization system (SelSum) and the largest dataset of Amazon product summaries (AmaSum). EMNLP 2021 conference paper.

Learning Opinion Summarizers by Selecting Informative Reviews This repository contains the codebase and the dataset for the corresponding EMNLP 2021

Arthur Bražinskas 39 Jan 01, 2023
This is an official implementation for "Self-Supervised Learning with Swin Transformers".

Self-Supervised Learning with Vision Transformers By Zhenda Xie*, Yutong Lin*, Zhuliang Yao, Zheng Zhang, Qi Dai, Yue Cao and Han Hu This repo is the

Swin Transformer 529 Jan 02, 2023
img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation

img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation Figure 1: We estimate the 6DoF rigid transformation of a 3D face (rendered in si

Vítor Albiero 519 Dec 29, 2022
This code is a toolbox that uses Torch library for training and evaluating the ERFNet architecture for semantic segmentation.

ERFNet This code is a toolbox that uses Torch library for training and evaluating the ERFNet architecture for semantic segmentation. NEW!! New PyTorch

Edu 104 Jan 05, 2023