Deep Markov Factor Analysis (NeurIPS2021)

Overview

Deep Markov Factor Analysis (DMFA)

Codes and experiments for deep Markov factor analysis (DMFA) model accepted for publication at NeurIPS2021:

A. Farnoosh and S. Ostadabbas, “Deep Markov Factor Analysis: Towards concurrent temporal and spatial analysis of fMRI data,” in Thirty-fifth Annual Conference on Neural Information Processing Systems (NeurIPS), 2021.

Dependencies:

Numpy, Scipy, Pytorch, Nibabel, Tqdm, Matplotlib, Sklearn, Json, Pandas

Autism Dataset:

Run the following snippet to restore results from pre-trained checkpoints for Autism dataset in ./fMRI_results folder. A few instances from each dataset are included to help the code run without errors. You may replace {site} with Caltec, Leuven, MaxMun, NYU_00, SBL_00, Stanfo, Yale_0, USM_00, DSU_0, UM_1_0, or set -exp autism for the full dataset. Here, checkpoint files for Caltec, SBL_00, Stanfo are only included due to storage limitations.

python dmfa_fMRI.py -t 75 -exp autism_{site} -dir ./data_autism/ -smod ./ckpt_fMRI/ -dpath ./fMRI_results/ -restore

or run the following snippet for training with batch size of 10 (full dataset needs to be downloaded and preprocessed/formatted beforehand):

python dmfa_fMRI.py -t 75 -exp autism_{site} -dir ./data_autism/ -smod ./ckpt_fMRI/ -dpath ./fMRI_results/ -bs 10

After downloading the full Autism dataset, run the following snippet to preprocess/format data:

python generate_fMRI_patches.py -T 75 -dir ./path_to_data/ -ext /*.gz -spath ./data_autism/

Depression Dataset:

Run the following snippet to restore results from pre-trained checkpoints for Depression dataset in ./fMRI_results folder. A few instances from the dataset are included to help the code run without errors. You may replace {ID} with 1, 2, 3, 4. ID 4 corresponds to the first experiment on Depression dataset in the paper. IDs 2, 3 correspond to the second experiment on Depression dataset in the paper.

python dmfa_fMRI.py -exp depression_{ID} -dir ./data_depression/ -smod ./ckpt_fMRI/ -dpath ./fMRI_results/ -restore

or run the following snippet for training with batch size of 10 (full dataset needs to be downloaded and preprocessed/formatted beforehand):

python dmfa_fMRI.py -exp depression_{ID} -dir ./data_depression/ -smod ./ckpt_fMRI/ -dpath ./fMRI_results/ -bs 10

After downloading the full Depression dataset, run the following snippet to preprocess/format data:

python generate_fMRI_patches_depression.py -T 6 -dir ./path_to_data/ -spath ./data_depression/

Synthetic fMRI data:

Run the following snippet to restore results from the pre-trained checkpoint for the synthetic experiment in ./synthetic_results folder (synthetic fMRI data is not included due to storage limitations).

python dmfa_synthetic.py

Owner
Sarah Ostadabbas
Sarah Ostadabbas is an Assistant Professor at the Electrical and Computer Engineering Department of Northeastern University (NEU). Sarah joined NEU from Georgia
Sarah Ostadabbas
The official PyTorch implementation of Curriculum by Smoothing (NeurIPS 2020, Spotlight).

Curriculum by Smoothing (NeurIPS 2020) The official PyTorch implementation of Curriculum by Smoothing (NeurIPS 2020, Spotlight). For any questions reg

PAIR Lab 36 Nov 23, 2022
Pytorch domain adaptation package

DomainAdaptation This package is created to tackle the problem of domain shifts when dealing with two domains of different feature distributions. In d

Institute of Computational Perception 7 Oct 22, 2022
A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning

CLEVR Dataset Generation This is the code used to generate the CLEVR dataset as described in the paper: CLEVR: A Diagnostic Dataset for Compositional

Facebook Research 503 Jan 04, 2023
FairMOT for Multi-Class MOT using YOLOX as Detector

FairMOT-X Project Overview FairMOT-X is a multi-class multi object tracker, which has been tailored for training on the BDD100K MOT Dataset. It makes

Jonathan Tan 33 Dec 28, 2022
SCU OlympicsRunning Baseline

Competition 1v1 running Environment check details in Jidi Competition RLChina2021智能体竞赛 做出的修改: 奖励重塑:修改了环境,重新设置了奖励的分配,使得奖励组成不只有零和博弈,还有探索环境的奖励。 算法微调:修改了官

ZiSeoi Wong 2 Nov 23, 2021
Facilitates implementing deep neural-network backbones, data augmentations

Introduction Nowadays, the training of Deep Learning models is fragmented and unified. When AI engineers face up with one specific task, the common wa

40 Dec 29, 2022
Causal Influence Detection for Improving Efficiency in Reinforcement Learning

Causal Influence Detection for Improving Efficiency in Reinforcement Learning This repository contains the code release for the paper "Causal Influenc

Autonomous Learning Group 21 Nov 29, 2022
Project page for End-to-end Recovery of Human Shape and Pose

End-to-end Recovery of Human Shape and Pose Angjoo Kanazawa, Michael J. Black, David W. Jacobs, Jitendra Malik CVPR 2018 Project Page Requirements Pyt

1.4k Dec 29, 2022
Self-Supervised Generative Style Transfer for One-Shot Medical Image Segmentation

Self-Supervised Generative Style Transfer for One-Shot Medical Image Segmentation This repository contains the Pytorch implementation of the proposed

Devavrat Tomar 19 Nov 10, 2022
Awesome Long-Tailed Learning

Awesome Long-Tailed Learning This repo pays specially attention to the long-tailed distribution, where labels follow a long-tailed or power-law distri

Stomach_ache 284 Jan 06, 2023
ICNet and PSPNet-50 in Tensorflow for real-time semantic segmentation

Real-Time Semantic Segmentation in TensorFlow Perform pixel-wise semantic segmentation on high-resolution images in real-time with Image Cascade Netwo

Oles Andrienko 219 Nov 21, 2022
CarND-LaneLines-P1 - Lane Finding Project for Self-Driving Car ND

Finding Lane Lines on the Road Overview When we drive, we use our eyes to decide where to go. The lines on the road that show us where the lanes are a

Udacity 769 Dec 27, 2022
High-Fidelity Pluralistic Image Completion with Transformers (ICCV 2021)

Image Completion Transformer (ICT) Project Page | Paper (ArXiv) | Pre-trained Models | Supplemental Material This repository is the official pytorch i

Ziyu Wan 243 Jan 03, 2023
Python 3 module to print out long strings of text with intervals of time inbetween

Python-Fastprint Python 3 module to print out long strings of text with intervals of time inbetween Install: pip install fastprint Sync Usage: from fa

Kainoa Kanter 2 Jun 27, 2022
UnpNet - Rethinking 3-D LiDAR Point Cloud Segmentation(IEEE TNNLS)

UnpNet Citation Please cite the following paper if you use this repository in your reseach. @article {PMID:34914599, Title = {Rethinking 3-D LiDAR Po

Shijie Li 4 Jul 15, 2022
3D Generative Adversarial Network

Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling This repository contains pre-trained models and sampling

Chengkai Zhang 791 Dec 20, 2022
[WACV 2020] Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints

Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints Official implementation for Reducing Footskate in Human Motion Recon

Virginia Tech Vision and Learning Lab 38 Nov 01, 2022
The source code and dataset for the RecGURU paper (WSDM 2022)

RecGURU About The Project Source code and baselines for the RecGURU paper "RecGURU: Adversarial Learning of Generalized User Representations for Cross

Chenglin Li 17 Jan 07, 2023
SeisComP/SeisBench interface to enable deep-learning (re)picking in SeisComP

scdlpicker SeisComP/SeisBench interface to enable deep-learning (re)picking in SeisComP Objective This is a simple deep learning (DL) repicker module

Joachim Saul 6 May 13, 2022
A pytorch implementation of Pytorch-Sketch-RNN

Pytorch-Sketch-RNN A pytorch implementation of https://arxiv.org/abs/1704.03477 In order to draw other things than cats, you will find more drawing da

Alexis David Jacq 172 Dec 12, 2022