Workshop Materials Delivered on 28/02/2022

Overview

intro-to-cnn-p1

Repo for hosting workshop materials delivered on 28/02/2022

Questions you will answer in this workshop

Learning Objectives

  • What are convolutional layers and how do Convolutional Neural Networks Work (CNNs)
  • Introduction to CNN classifiers, object detectors, and Semantic Segmentation
  • Learn to convert a fully dense network to a CNN in TensorFlow to improve the performance of image classifiers
  • A quick look into Object detection CNNs
  • Learn how to design CNNs for your AI application

What will I learn during this workshop

Prerequisites

In this training, we will approach the problem from the ground up. Reviewing how CNNs work without getting bogged down into the detail and getting some models training as fast as possible. The workshop materials will be delivered in a combination of coding exercises and lectures.

Steps

This workshop consists of the following activities:

Slides

You can access the slides here

Setup

  1. Clone this git repository using git clone https://github.com/beginners-machine-learning-london/intro-to-cnn-p1
  2. Open the project in your IDE such as Pycharm
  3. Run the following command to install the required packages (Learn more about python virtual environments here):
    1. Create the environment using python -m venv venv
    2. Activate the environment using source venv/bin/activate
    3. Install the required packages using pip install -r requirements.txt

Featured technologies

  • Python: Python is a programming language that lets you work more quickly and integrate your systems more effectively.
  • Tensorflow: A deep learning framework by Google (used in most production environments).
  • Keras: A high-level API for Tensorflow.
  • OpenCV: Open source computer vision library for computer vision and image processing.
  • Matplotlib: A library for plotting graphs and images in Python.
  • Numpy: A library for scientific computing with Python.

Dataset Source

  • The Fashion MNIST datasets are provided as part of the deep learning framework Tensorflow under the MIT license.
  • The dataset consists of 60,000 28x28 grayscale images of 10 classes: T-shirt/top, Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag, Ankle boot.
  • The images are divided into train and test sets. The training set contains 60,000 images. The test set contains 10,000 images.
  • This dataset is used in this workshop to train a CNN.
  • The images are 28x28 grayscale images.
  • The labels are one-hot encoded.
  • The training set is used to train the model and The test set is used to evaluate the model.

Learn More

Collaboration, Questions and Discussions

  • BML Slack Channel - Join our slack workspace to collaborate with others, discuss ideas and post any questions you have about our group or the workshops
  • Have questions about workshop exercises or setting up your AWS account and configurations? Post them here

Workshop Feedback

  • How was this workshop? Please provide us with some feedback here so that we can improve the content and delivery of future workshops.
Owner
Beginners Machine Learning
Content hub for hands-on machine learning workshops.
Beginners Machine Learning
Vector AI — A platform for building vector based applications. Encode, query and analyse data using vectors.

Vector AI is a framework designed to make the process of building production grade vector based applications as quickly and easily as possible. Create

Vector AI 267 Dec 23, 2022
Vector Neurons: A General Framework for SO(3)-Equivariant Networks

Vector Neurons: A General Framework for SO(3)-Equivariant Networks Created by Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard, Andrea Tagliasacc

Congyue Deng 332 Dec 29, 2022
Spatial-Location-Constraint-Prototype-Loss-for-Open-Set-Recognition

Spatial Location Constraint Prototype Loss for Open Set Recognition Official PyTorch implementation of "Spatial Location Constraint Prototype Loss for

Xia Ziheng 12 Jun 24, 2022
Volumetric parameterization of the placenta to a flattened template

placenta-flattening A MATLAB algorithm for volumetric mesh parameterization. Developed for mapping a placenta segmentation derived from an MRI image t

Mazdak Abulnaga 12 Mar 14, 2022
这个开源项目主要是对经典的时间序列预测算法论文进行复现,模型主要参考自GluonTS,框架主要参考自Informer

Time Series Research with Torch 这个开源项目主要是对经典的时间序列预测算法论文进行复现,模型主要参考自GluonTS,框架主要参考自Informer。 建立原因 相较于mxnet和TF,Torch框架中的神经网络层需要提前指定输入维度: # 建立线性层 TensorF

Chi Zhang 85 Dec 29, 2022
Code and description for my BSc Project, September 2021

BSc-Project Disclaimer: This repo consists of only the additional python scripts necessary to run the agent. To run the project on your own personal d

Matin Tavakoli 20 Jul 19, 2022
A hifiasm fork for metagenome assembly using Hifi reads.

hifiasm_meta - de novo metagenome assembler, based on hifiasm, a haplotype-resolved de novo assembler for PacBio Hifi reads.

44 Jul 10, 2022
AdamW optimizer and cosine learning rate annealing with restarts

AdamW optimizer and cosine learning rate annealing with restarts This repository contains an implementation of AdamW optimization algorithm and cosine

Maksym Pyrozhok 133 Dec 20, 2022
Node Editor Plug for Blender

NodeEditor Blender的程序化建模插件 Show Current 基本框架:自定义的tree-node-socket、tree中的node与socket采用字典查询、基于socket入度的拓扑排序 数据传递和处理依靠Tree中的字典,socket传递字典key TODO 增加更多的节点

Cuimi 11 Dec 03, 2022
TResNet: High Performance GPU-Dedicated Architecture

TResNet: High Performance GPU-Dedicated Architecture paperV2 | pretrained models Official PyTorch Implementation Tal Ridnik, Hussam Lawen, Asaf Noy, I

426 Dec 28, 2022
DANet for Tabular data classification/ regression.

Deep Abstract Networks A pyTorch implementation for AAAI-2022 paper DANets: Deep Abstract Networks for Tabular Data Classification and Regression. Bri

Ronnie Rocket 55 Sep 14, 2022
Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation

Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation Prerequisites This repo is built upon a local copy of transfo

Jixuan Wang 10 Sep 28, 2022
The official implementation of NeMo: Neural Mesh Models of Contrastive Features for Robust 3D Pose Estimation [ICLR-2021]. https://arxiv.org/pdf/2101.12378.pdf

NeMo: Neural Mesh Models of Contrastive Features for Robust 3D Pose Estimation [ICLR-2021] Release Notes The offical PyTorch implementation of NeMo, p

Angtian Wang 76 Nov 23, 2022
Python package for visualizing the loss landscape of parameterized quantum algorithms.

orqviz A Python package for easily visualizing the loss landscape of Variational Quantum Algorithms by Zapata Computing Inc. orqviz provides a collect

Zapata Computing, Inc. 75 Dec 30, 2022
A set of examples around hub for creating and processing datasets

Examples for Hub - Dataset Format for AI A repository showcasing examples of using Hub Uploading Dataset Places365 Colab Tutorials Notebook Link Getti

Activeloop 11 Dec 14, 2022
Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding

2D-TAN (Optimized) Introduction This is an optimized re-implementation repository for AAAI'2020 paper: Learning 2D Temporal Localization Networks for

Joya Chen 112 Dec 31, 2022
A script that trains a model to recognize handwritten digits using the MNIST data set.

handwritten-digits-recognition A script that trains a model to recognize handwritten digits using the MNIST data set. Then it loads external files and

Hamza Sayih 1 Oct 30, 2021
a baseline to practice

ccks2021_track3_baseline a baseline to practice 路径可能会有问题,自己改改 torch==1.7.1 pyhton==3.7.1 transformers==4.7.0 cuda==11.0 this is a baseline, you can fi

45 Nov 23, 2022
Code and Data for the paper: Molecular Contrastive Learning with Chemical Element Knowledge Graph [AAAI 2022]

Knowledge-enhanced Contrastive Learning (KCL) Molecular Contrastive Learning with Chemical Element Knowledge Graph [ AAAI 2022 ]. We construct a Chemi

Fangyin 58 Dec 26, 2022