Implementation of the CVPR 2021 paper "Online Multiple Object Tracking with Cross-Task Synergy"

Related tags

Deep LearningTADAM
Overview

Online Multiple Object Tracking with Cross-Task Synergy

This repository is the implementation of the CVPR 2021 paper "Online Multiple Object Tracking with Cross-Task Synergy" Structure of TADAM

Installation

Tested on python=3.8 with torch=1.8.1 and torchvision=0.9.1.

It should also be compatible with python>=3.6, torch>=1.4.0 and torchvision>=0.4.0. Not tested on lower versions.

1. Clone the repository

git clone https://github.com/songguocode/TADAM.git

2. Create conda env and activate

conda create -n TADAM python=3.8
conda activate TADAM

3. Install required packages

pip install torch torchvision scipy opencv-python yacs

All models are set to run on GPU, thus make sure graphics card driver is properly installed, as well as CUDA.

To check if torch is running with CUDA, run in python:

import torch
torch.cuda.is_available()

It is working if True is returned.

See PyTorch Official Site if torch is not installed or working properly.

4. Clone MOTChallenge benchmark evaluation code

git clone https://github.com/JonathonLuiten/TrackEval.git

By now there should be two folders, TADAM and TrackEval.

Refer to MOTChallenge-Official for instructions.

Download the provided data.zip, unzip as folder data and copy inside TrackEval as TrackEva/data.

Move into TADAM folder

cd TADAM

5. Prepare MOTChallenge data

Download MOT16, MOT17, MOT17Det, and MOT20 and place them inside a datasets folder.

Two options to provide datasets location for training/testing:

  • a. Add a symbolic link inside TADAM folder by ln -s path_of_datasets datasets
  • b. In TADAM/configs/config.py, assign __C.PATHS.DATASET_ROOT with path_of_datasets

6. Download Models

The training base of TADAM is a detector pretrained on COCO. The base model coco_checkpoint.pth is provided in Google Drive

Trained models are also provided for reference:

  • TADAM_MOT16.pth
  • TADAM_MOT17.pth
  • TADAM_MOT20.pth

Create a folder output/models and place all models inside.

Train

  1. Training on single GPU, for MOT17 as an example
python -m lib.training.train TADAM_MOT17 --config TADAM_MOT17

First TADAM_MOT17 specifies the output name of the trained model, which can be changed as preferred.

Second TADAM_MOT17 refers to the config file lib/configs/TADAM_MOT17.yaml that loads training parameters. Switch config for respective dataset training. Config files are located in lib/configs.

  1. Training on multiple GPU with Distributed Data Parallel
OMP_NUM_THREADS=1 python -m torch.distributed.launch --nproc_per_node=2 --use_env -m lib.training.train TADAM_MOT17 --config TADAM_MOT17

Argument --nproc_per_node=2 specifies how many GPUs to be used for training. Here 2 cards are used.

Trained model will be stored inside output/models with the specified output name

Evaluate

python -m lib.tracking.test_tracker --result-name xxx --config TADAM_MOT17 --evaluation

Change xxx to prefered result name. --evaluation toggles on evaluation right after obtaining tracking results. Remove it if only running for results without evaluation. Evaluation requires all sequences results of the specified dataset.

Either run evaluation after training, or download and test the provided trained models.

Note that if output name of the trained model is changed, it must be specified in corresponding .yaml config file's line, i.e. replace value in MODEL: TADAM_MOT17.pth with expected model file name.

Code from TrackEval is used for evaluation, and it is set to run on multiple cores (8 cores) by default.

To run an evaluation after obtaining tracking results (with sequences result files), run:

python -m lib.utils.official_benchmark --result-name xxx --config TADAM_MOT17

Replace xxx with the result name, and choose config accordingly.

Tracking results can be found in output/results under respective dataset name folders. Detailed result is stored in a xxx_detailed.csv file, while the summary is given in a xxx_summary.txt file.

Results for reference

The evaluation results on train sets are given here for reference. See paper for reported test sets results.

  • MOT16
MOTA	MOTP	MODA	CLR_Re	CLR_Pr	MTR	PTR	MLR	CLR_TP	CLR_FN
63.7	91.6	63.9	64.5	99.0	35.6	40.8	23.6	71242	39165
CLR_FP	IDSW	MT	PT	ML	Frag	sMOTA	IDF1	IDR	IDP
689	186	184	211	122	316	58.3	68.0	56.2	86.2
IDTP	IDFN	IDFP	Dets	GT_Dets	IDs	GT_IDs
62013	48394	9918	71931	110407	446	517
  • MOT17
MOTA	MOTP	MODA	CLR_Re	CLR_Pr	MTR	PTR	MLR	CLR_TP	CLR_FN
68.0	91.3	68.2	69.0	98.8	43.5	37.5	19.0	232600	104291
CLR_FP	IDSW	MT	PT	ML	Frag	sMOTA	IDF1	IDR	IDP
2845	742	712	615	311	1182	62.0	71.6	60.8	87.0
IDTP	IDFN	IDFP	Dets	GT_Dets	IDs	GT_IDs
204819	132072	30626	235445	336891	1455	1638
  • MOT20
MOTA	MOTP	MODA	CLR_Re	CLR_Pr	MTR	PTR	MLR	CLR_TP	CLR_FN
80.2	87.0	80.4	82.2	97.9	64.0	28.8	7.18	932899	201715
CLR_FP	IDSW	MT	PT	ML	Frag	sMOTA	IDF1	IDR	IDP
20355	2275	1418	638	159	2737	69.5	72.3	66.5	79.2
IDTP	IDFN	IDFP	Dets	GT_Dets	IDs	GT_IDs
754621	379993	198633	953254	1134614	2953	2215

Results could differ slightly, and small variations should be acceptable.

Visualization

A visualization tool is provided to preview datasets' ground-truths, provided detections, and generated tracking results.

python -m lib.utils.visualization --config TADAM_MOT17 --which-set train --sequence 02 --public-detection FRCNN --result xxx --start-frame 1 --scale 0.8

Specify config files, train/test split, and sequence with --config, --which-set, --sequence respectively. --public-detection should only be specified for MOT17.

Replace --result xxx with the tracking results --start-frame 1 means viewing from frame 1, while --scale 0.8 resizes viewing window with given ratio.

Commands in visualization window:

  • "<": previous frame
  • ">": next frame
  • "t": toggle between viewing ground_truths, provided detections, and tracking results
  • "s": save current frame with all rendered elements
  • "h": hide frame information on window's top-left corner
  • "i": hide identity index on bounding boxes' top-left corner
  • "Esc" or "q": exit program

Pretrain detector on COCO

Basic detector is pretrained on COCO dataset, before training on MOT. A Faster-RCNN FPN with ResNet101 backbone is adopted in this code, which can be replaced by other similar detectors with code modifications.

Refer to Object detection reference training scripts on how to train a PyTorch-based detector.

See Tracking without bells and whistles for a jupyter notebook hands-on, which is also based on the aforementioned reference codes.

Publication

If you use the code in your research, please cite:

@InProceedings{TADAM_2021_CVPR,
    author = {Guo, Song and Wang, Jingya and Wang, Xinchao and Tao, Dacheng},
    title = {Online Multiple Object Tracking With Cross-Task Synergy},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month = {June},
    year = {2021},
}
SubOmiEmbed: Self-supervised Representation Learning of Multi-omics Data for Cancer Type Classification

SubOmiEmbed: Self-supervised Representation Learning of Multi-omics Data for Cancer Type Classification

Sayed Hashim 3 Nov 15, 2022
Markov Attention Models

Introduction This repo contains code for reproducing the results in the paper Graphical Models with Attention for Context-Specific Independence and an

Vicarious 0 Dec 09, 2021
Fuzzer for Linux Kernel Drivers

difuze: Fuzzer for Linux Kernel Drivers This repo contains all the sources (including setup scripts), you need to get difuze up and running. Tested on

seclab 344 Dec 27, 2022
Orthogonal Jacobian Regularization for Unsupervised Disentanglement in Image Generation (ICCV 2021)

Orthogonal Jacobian Regularization for Unsupervised Disentanglement in Image Generation Home | PyTorch BigGAN Discovery | TensorFlow ProGAN Regulariza

Yuxiang Wei 54 Dec 30, 2022
P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks

P-tuning v2 P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks An optimized prompt tuning strategy achievi

THUDM 540 Dec 30, 2022
Multiwavelets-based operator model

Multiwavelet model for Operator maps Gaurav Gupta, Xiongye Xiao, and Paul Bogdan Multiwavelet-based Operator Learning for Differential Equations In Ne

Gaurav 33 Dec 04, 2022
My personal Home Assistant configuration.

About This is my personal Home Assistant configuration. My guiding princile is to have full local control of all my devices. I intend everything to ru

Chris Turra 13 Jun 07, 2022
Official pytorch implementation of Active Learning for deep object detection via probabilistic modeling (ICCV 2021)

Active Learning for Deep Object Detection via Probabilistic Modeling This repository is the official PyTorch implementation of Active Learning for Dee

NVIDIA Research Projects 130 Jan 06, 2023
Code for "Unsupervised Layered Image Decomposition into Object Prototypes" paper

DTI-Sprites Pytorch implementation of "Unsupervised Layered Image Decomposition into Object Prototypes" paper Check out our paper and webpage for deta

40 Dec 22, 2022
Code image classification of MNIST dataset using different architectures: simple linear NN, autoencoder, and highway network

Deep Learning for image classification pip install -r http://webia.lip6.fr/~baskiotisn/requirements-amal.txt Train an autoencoder python3 train_auto

Hector Kohler 0 Mar 30, 2022
Official code release for "Learned Spatial Representations for Few-shot Talking-Head Synthesis" ICCV 2021

Official code release for "Learned Spatial Representations for Few-shot Talking-Head Synthesis" ICCV 2021

Moustafa Meshry 16 Oct 05, 2022
UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation

UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation. Training python train.py --c

Rishikesh (ऋषिकेश) 55 Dec 26, 2022
Pcos-prediction - Predicts the likelihood of Polycystic Ovary Syndrome based on patient attributes and symptoms

PCOS Prediction 🥼 Predicts the likelihood of Polycystic Ovary Syndrome based on

Samantha Van Seters 1 Jan 10, 2022
Shape Matching of Real 3D Object Data to Synthetic 3D CADs (3DV project @ ETHZ)

Real2CAD-3DV Shape Matching of Real 3D Object Data to Synthetic 3D CADs (3DV project @ ETHZ) Group Member: Yue Pan, Yuanwen Yue, Bingxin Ke, Yujie He

24 Jun 22, 2022
SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data

SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data Au

14 Nov 28, 2022
Graph-total-spanning-trees - A Python script to get total number of Spanning Trees in a Graph

Total number of Spanning Trees in a Graph This is a python script just written f

Mehdi I. 0 Jul 18, 2022
Python Blood Vessel Topology Analysis

Python Blood Vessel Topology Analysis This repository is not being updated anymore. The new version of PyVesTo is called PyVaNe and is available at ht

6 Nov 15, 2022
OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network

Stock Price Prediction of Apple Inc. Using Recurrent Neural Network OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network Dataset:

Nouroz Rahman 410 Jan 05, 2023
[ICLR'21] FedBN: Federated Learning on Non-IID Features via Local Batch Normalization

FedBN: Federated Learning on Non-IID Features via Local Batch Normalization This is the PyTorch implemention of our paper FedBN: Federated Learning on

<a href=[email protected]"> 156 Dec 15, 2022
Intent parsing and slot filling in PyTorch with seq2seq + attention

PyTorch Seq2Seq Intent Parsing Reframing intent parsing as a human - machine translation task. Work in progress successor to torch-seq2seq-intent-pars

Sean Robertson 160 Jan 07, 2023