Hooks for VCOCO

Related tags

Deep Learningv-coco
Overview

Verbs in COCO (V-COCO) Dataset

This repository hosts the Verbs in COCO (V-COCO) dataset and associated code to evaluate models for the Visual Semantic Role Labeling (VSRL) task as ddescribed in this technical report.

Citing

If you find this dataset or code base useful in your research, please consider citing the following papers:

@article{gupta2015visual,
  title={Visual Semantic Role Labeling},
  author={Gupta, Saurabh and Malik, Jitendra},
  journal={arXiv preprint arXiv:1505.04474},
  year={2015}
}

@incollection{lin2014microsoft,
  title={Microsoft COCO: Common objects in context},
  author={Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence},
  booktitle={Computer Vision--ECCV 2014},
  pages={740--755},
  year={2014},
  publisher={Springer}
}

Installation

  1. Clone repository (recursively, so as to include COCO API).

    git clone --recursive https://github.com/s-gupta/v-coco.git
  2. This dataset builds off MS COCO, please download MS-COCO images and annotations.

  3. Current V-COCO release only uses a subset of MS-COCO images (Image IDs listed in data/splits/vcoco_all.ids). Use the following script to pick out annotations from the COCO annotations to allow faster loading in V-COCO.

    # Assume you cloned the repository to `VCOCO_DIR'
    cd $VCOCO_DIR
    # If you downloaded coco annotations to coco-data/annotations
    python script_pick_annotations.py coco-data/annotations
  4. Build coco/PythonAPI/pycocotools/_mask.so, cython_bbox.so.

    # Assume you cloned the repository to `VCOCO_DIR'
    cd $VCOCO_DIR/coco/PythonAPI/ && make
    cd $VCOCO_DIR && make

Using the dataset

  1. An IPython notebook, illustrating how to use the annotations in the dataset is available in V-COCO.ipynb
  2. The current release of the dataset includes annotations as indicated in Table 1 in the paper. We are collecting role annotations for the 6 categories (that are missing) and will make them public shortly.

Evaluation

We provide evaluation code that computes agent AP and role AP, as explained in the paper.

In order to use the evaluation code, store your predictions as a pickle file (.pkl) in the following format:

[ {'image_id':        # the coco image id,
   'person_box':      #[x1, y1, x2, y2] the box prediction for the person,
   '[action]_agent':  # the score for action corresponding to the person prediction,
   '[action]_[role]': # [x1, y1, x2, y2, s], the predicted box for role and 
                      # associated score for the action-role pair.
   } ]

Assuming your detections are stored in det_file=/path/to/detections/detections.pkl, do

from vsrl_eval import VCOCOeval
vcocoeval = VCOCOeval(vsrl_annot_file, coco_file, split_file)
  # e.g. vsrl_annot_file: data/vcoco/vcoco_val.json
  #      coco_file:       data/instances_vcoco_all_2014.json
  #      split_file:      data/splits/vcoco_val.ids
vcocoeval._do_eval(det_file, ovr_thresh=0.5)

We introduce two scenarios for role AP evaluation.

  1. [Scenario 1] In this scenario, for the test cases with missing role annotations an agent role prediction is correct if the action is correct & the overlap between the person boxes is >0.5 & the corresponding role is empty e.g. [0,0,0,0] or [NaN,NaN,NaN,NaN]. This scenario is fit for missing roles due to occlusion.

  2. [Scenario 2] In this scenario, for the test cases with missing role annotations an agent role prediction is correct if the action is correct & the overlap between the person boxes is >0.5 (the corresponding role is ignored). This scenario is fit for the cases with roles outside the COCO categories.

Owner
Saurabh Gupta
Saurabh Gupta
Studying Python release adoptions by looking at PyPI downloads

Analysis of version adoptions on PyPI We get PyPI download statistics via Google's BigQuery using the pypinfo tool. Usage First you need to get an acc

Julien Palard 9 Nov 04, 2022
Code release for ConvNeXt model

A ConvNet for the 2020s Official PyTorch implementation of ConvNeXt, from the following paper: A ConvNet for the 2020s. arXiv 2022. Zhuang Liu, Hanzi

Meta Research 4.6k Jan 08, 2023
Drone Task1 - Drone Task1 With Python

Drone_Task1 Matching Results 3.mp4 1.mp4

MLV Lab (Machine Learning and Vision Lab at Korea University) 11 Nov 14, 2022
Explainability for Vision Transformers (in PyTorch)

Explainability for Vision Transformers (in PyTorch) This repository implements methods for explainability in Vision Transformers

Jacob Gildenblat 442 Jan 04, 2023
Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning And private Server services

Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning

MaCan 4.2k Dec 29, 2022
Deep Learning Interviews book: Hundreds of fully solved job interview questions from a wide range of key topics in AI.

This book was written for you: an aspiring data scientist with a quantitative background, facing down the gauntlet of the interview process in an increasingly competitive field. For most of you, the

4.1k Dec 28, 2022
TensorFlow ROCm port

Documentation TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, a

ROCm Software Platform 622 Jan 09, 2023
September-Assistant - Open-source Windows Voice Assistant

September - Windows Assistant September is an open-source Windows personal assis

The Nithin Balaji 9 Nov 22, 2022
Tackling the Class Imbalance Problem of Deep Learning Based Head and Neck Organ Segmentation

Info This is the code repository of the work Tackling the Class Imbalance Problem of Deep Learning Based Head and Neck Organ Segmentation from Elias T

2 Apr 20, 2022
Code for paper Novel View Synthesis via Depth-guided Skip Connections

Novel View Synthesis via Depth-guided Skip Connections Code for paper Novel View Synthesis via Depth-guided Skip Connections @InProceedings{Hou_2021_W

8 Mar 14, 2022
(ICCV 2021) Official code of "Dressing in Order: Recurrent Person Image Generation for Pose Transfer, Virtual Try-on and Outfit Editing."

Dressing in Order (DiOr) 👚 [Paper] 👖 [Webpage] 👗 [Running this code] The official implementation of "Dressing in Order: Recurrent Person Image Gene

Aiyu Cui 277 Dec 28, 2022
Exploring Cross-Image Pixel Contrast for Semantic Segmentation

Exploring Cross-Image Pixel Contrast for Semantic Segmentation Exploring Cross-Image Pixel Contrast for Semantic Segmentation, Wenguan Wang, Tianfei Z

Tianfei Zhou 510 Jan 02, 2023
PyTorch implementation of Decoupling Value and Policy for Generalization in Reinforcement Learning

PyTorch implementation of Decoupling Value and Policy for Generalization in Reinforcement Learning

48 Dec 08, 2022
Manage the availability of workspaces within Frappe/ ERPNext (sidebar) based on user-roles

Workspace Permissions Manage the availability of workspaces within Frappe/ ERPNext (sidebar) based on user-roles. Features Configure foreach workspace

Patrick.St. 18 Sep 26, 2022
Code for "Intra-hour Photovoltaic Generation Forecasting based on Multi-source Data and Deep Learning Methods."

pv_predict_unet-lstm Code for "Intra-hour Photovoltaic Generation Forecasting based on Multi-source Data and Deep Learning Methods." IEEE Transactions

FolkScientistInDL 8 Oct 08, 2022
Ros2-voiceroid2 - ROS2 wrapper package of VOICEROID2

ros2_voiceroid2 ROS2 wrapper package of VOICEROID2 Windows Only Installation Ins

Nkyoku 1 Jan 23, 2022
Mmdetection3d Noted - MMDetection3D is an open source object detection toolbox based on PyTorch

MMDetection3D is an open source object detection toolbox based on PyTorch

Jiangjingwen 13 Jan 06, 2023
Adjusting for Autocorrelated Errors in Neural Networks for Time Series

Adjusting for Autocorrelated Errors in Neural Networks for Time Series This repository is the official implementation of the paper "Adjusting for Auto

Fan-Keng Sun 51 Nov 05, 2022
TFOD-MASKRCNN - Tensorflow MaskRCNN With Python

Tensorflow- MaskRCNN Steps git clone https://github.com/amalaj7/TFOD-MASKRCNN.gi

Amal Ajay 2 Jan 18, 2022
PyTorch implementation of Glow

glow-pytorch PyTorch implementation of Glow, Generative Flow with Invertible 1x1 Convolutions (https://arxiv.org/abs/1807.03039) Usage: python train.p

Kim Seonghyeon 433 Dec 27, 2022