本项目是一个带有前端界面的垃圾分类项目,加载了训练好的模型参数,模型为efficientnetb4,暂时为40分类问题。

Overview

说明

本项目是一个带有前端界面的垃圾分类项目,加载了训练好的模型参数,模型为efficientnetb4,暂时为40分类问题。

python依赖

tf2.3 、cv2、numpy、pyqt5

pyqt5安装

pip install PyQt5
pip install PyQt5-tools

使用

程序入口为main文件,pyqt5的界面为使用qt designer生成的。界面中核心的是4个控件,视频控件、计数控件、历史记录控件和分类结果对话框。 (在window.py中的class Ui_MainWindow中setupUi函数中的最后,做了计数控件、历史记录控件和模型、标签的加载)

视频控件

使用cv2抓取摄像头视频,并显示在videoLayout中的label控件label上。(名字就叫label..)(在main函数中使用语句 camera = Camera(1) # 0为笔记本自带摄像头 1为USB摄像头 抓取视频画面。) 以下是Ui_MainWindow类中与视频显示相关的部分:(如果部署在树莓派上,此处需要改动)

class Ui_MainWindow(object):

    def __init__(self, camera):
        self.camera = camera
        # Create a timer.
        self.timer = QTimer()
        self.timer.timeout.connect(self.nextFrameSlot)
        self.start()

    def start(self):
        self.camera.openCamera()
        self.timer.start(1000. / 24)

    def nextFrameSlot(self):
        rval, frame = self.camera.vc.read()
        frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        image = QImage(frame, frame.shape[1], frame.shape[0], QImage.Format_RGB888)
        pixmap = QPixmap.fromImage(image)
        self.label.setPixmap(pixmap)

计数控件

读取保存在static/CSV/count.csv文件中的分类次数,并显示在countLayout中的label控件count上。初始状态的static/CSV/count.csv文件为只有一个0。

历史记录控件

读取保存在static/CSV/history.csv文件中的历史记录(第一列为分类结果,第二列为照片路径),并显示在listLayout中的QListWidget控件listWidget上。初始状态的static/CSV/history.csv文件为空。 这里只显示了最近15条记录,代码在csv_utils.py中的read_history_csv函数。

分类结果对话框

触发次对话框的条件是点击界面上的pushButton(绑定代码位于window.py中的class Ui_MainWindow中setupUi函数),触发的函数为class Ui_MainWindow中的show_dialog函数。如果部署在树莓派上可改为由距离传感器触发。

  self.pushButton.clicked.connect(self.show_dialog)

这部分的核心就是show_dialog函数。要实现拍照,调用分类模型,在对话框关闭后还实现了主界面计数控件和历史记录控件的更新。(耦合性较大..) 文件的保存方面只是使用了CSV文件来保存计数、结果和照片路径。(初始状态的static/CSV/count.csv文件为只有一个0。初始状态的static/CSV/history.csv文件为空。)

    def show_dialog(self):
        count_csv_path = "static/CSV/count.csv"  # 计数
        history_csv_path = "static/CSV/history.csv"  # 历史记录
        image_path = "static/photos/"  # 照片目录
        classification = "test"  # 测试用的

        timeout = 4 # 对话框停留时间
        ret, frame = self.camera.vc.read()  # 拍照
        self.history_photo_num = self.history_photo_num + 1  # 照片自增命名
        image_path = image_path + str(self.history_photo_num) + ".jpg"  # 保存照片的路径
        cv2.imwrite(image_path, frame)  # 保存
        # time.sleep(1)

        image = utils.load_image(image_path)
        classify_model = self.classify_model  # 模型、标签的初始化在setupUi函数最后
        label_to_content = self.label_to_content
        prediction, label = classify_image(image, classify_model) # 调用模型

        print('-' * 100)
        print(f'Test one image: {image_path}')
        print(f'classification: {label_to_content[str(label)]}\nconfidence: {prediction[0, label]}')
        print('-' * 100)

        classification = str(label_to_content[str(label)])  # 分类结果
        confidence = str(f'{prediction[0, label]}')  # 置信度
        confidence = confidence[0:5]  # 保留三位小数
        self.dialog = Dialog(timeout=timeout, classification=classification, confidence=confidence)  # 传入结果和置信度
        self.dialog.show()
        self.dialog.exec() # 对话框退出

        # 更新历史记录中count数目
        count_list = read_count_csv(filename=count_csv_path)
        count = int(count_list[0]) + 1
        self.count.setText(str(count))
        write_count_csv(filename=count_csv_path, count=count)

        # 更新历史记录
        write_history_csv(history_csv_path, classification=classification, photo_path=image_path)
        self.listWidget.clear()
        history_list = read_history_csv(history_csv_path)
        for record in history_list:  # 每次都是全部重新加载,效率较低...
            item = QtWidgets.QListWidgetItem(QtGui.QIcon(record[1]), record[0])  # 0为类别,1为图片路径
            self.listWidget.addItem(item)
Owner
just swag
A time series processing library

Timeseria Timeseria is a time series processing library which aims at making it easy to handle time series data and to build statistical and machine l

Stefano Alberto Russo 11 Aug 08, 2022
Code for "Retrieving Black-box Optimal Images from External Databases" (WSDM 2022)

Retrieving Black-box Optimal Images from External Databases (WSDM 2022) We propose how a user retreives an optimal image from external databases of we

joisino 5 Apr 13, 2022
No-reference Image Quality Assessment(NIQA) Algorithms (BRISQUE, NIQE, PIQE, RankIQA, MetaIQA)

No-Reference Image Quality Assessment Algorithms No-reference Image Quality Assessment(NIQA) is a task of evaluating an image without a reference imag

Dae-Young Song 26 Jan 04, 2023
Pytorch Implementation of "Diagonal Attention and Style-based GAN for Content-Style disentanglement in image generation and translation" (ICCV 2021)

DiagonalGAN Official Pytorch Implementation of "Diagonal Attention and Style-based GAN for Content-Style Disentanglement in Image Generation and Trans

32 Dec 06, 2022
an implementation of 3D Ken Burns Effect from a Single Image using PyTorch

3d-ken-burns This is a reference implementation of 3D Ken Burns Effect from a Single Image [1] using PyTorch. Given a single input image, it animates

Simon Niklaus 1.4k Dec 28, 2022
PyTorch implementation of UNet++ (Nested U-Net).

PyTorch implementation of UNet++ (Nested U-Net) This repository contains code for a image segmentation model based on UNet++: A Nested U-Net Architect

4ui_iurz1 642 Jan 04, 2023
A Streamlit component to render ECharts.

Streamlit - ECharts A Streamlit component to display ECharts. Install pip install streamlit-echarts Usage This library provides 2 functions to display

Fanilo Andrianasolo 290 Dec 30, 2022
Stochastic Tensor Optimization for Robot Motion - A GPU Robot Motion Toolkit

STORM Stochastic Tensor Optimization for Robot Motion - A GPU Robot Motion Toolkit [Install Instructions] [Paper] [Website] This package contains code

NVIDIA Research Projects 101 Dec 12, 2022
Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [CVPR 2021]

Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [BCNet, CVPR 2021] This is the official pytorch implementation of BCNet built on

Lei Ke 434 Dec 01, 2022
On Evaluation Metrics for Graph Generative Models

On Evaluation Metrics for Graph Generative Models Authors: Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, Graham Taylor This is the offic

13 Jan 07, 2023
[CVPR 2021] NormalFusion: Real-Time Acquisition of Surface Normals for High-Resolution RGB-D Scanning

NormalFusion: Real-Time Acquisition of Surface Normals for High-Resolution RGB-D Scanning Project Page | Paper | Supplemental material #1 | Supplement

KAIST VCLAB 49 Nov 24, 2022
PyTorch implementation for NED. It can be used to manipulate the facial emotions of actors in videos based on emotion labels or reference styles.

Neural Emotion Director (NED) - Official Pytorch Implementation Example video of facial emotion manipulation while retaining the original mouth motion

Foivos Paraperas 89 Dec 23, 2022
Code for "Hierarchical Skills for Efficient Exploration" HSD-3 Algorithm and Baselines

Hierarchical Skills for Efficient Exploration This is the source code release for the paper Hierarchical Skills for Efficient Exploration. It contains

Facebook Research 38 Dec 06, 2022
[ICLR 2022] DAB-DETR: Dynamic Anchor Boxes are Better Queries for DETR

DAB-DETR This is the official pytorch implementation of our ICLR 2022 paper DAB-DETR. Authors: Shilong Liu, Feng Li, Hao Zhang, Xiao Yang, Xianbiao Qi

336 Dec 25, 2022
A 2D Visual Localization Framework based on Essential Matrices [ICRA2020]

A 2D Visual Localization Framework based on Essential Matrices This repository provides implementation of our paper accepted at ICRA: To Learn or Not

Qunjie Zhou 27 Nov 07, 2022
Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021)

Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021) This repository contains the code for our ICCV2021 paper by Jia-Ren Cha

Jia-Ren Chang 40 Dec 27, 2022
disentanglement_lib is an open-source library for research on learning disentangled representations.

disentanglement_lib disentanglement_lib is an open-source library for research on learning disentangled representation. It supports a variety of diffe

Google Research 1.3k Dec 28, 2022
Source code for CVPR2022 paper "Abandoning the Bayer-Filter to See in the Dark"

Abandoning the Bayer-Filter to See in the Dark (CVPR 2022) Paper: https://arxiv.org/abs/2203.04042 (Arxiv version) This code includes the training and

74 Dec 15, 2022
Freecodecamp Scientific Computing with Python Certification; Solution for Challenge 2: Time Calculator

Assignment Write a function named add_time that takes in two required parameters and one optional parameter: a start time in the 12-hour clock format

Hellen Namulinda 0 Feb 26, 2022
PyTorchMemTracer - Depict GPU memory footprint during DNN training of PyTorch

A Memory Tracer For PyTorch OOM is a nightmare for PyTorch users. However, most

Jiarui Fang 9 Nov 14, 2022