Potato Disease Classification - Training, Rest APIs, and Frontend to test.

Overview

Potato Disease Classification

Setup for Python:

  1. Install Python (Setup instructions)

  2. Install Python packages

pip3 install -r training/requirements.txt
pip3 install -r api/requirements.txt
  1. Install Tensorflow Serving (Setup instructions)

Setup for ReactJS

  1. Install Nodejs (Setup instructions)
  2. Install NPM (Setup instructions)
  3. Install dependencies
cd frontend
npm install --from-lock-json
npm audit fix
  1. Copy .env.example as .env.

  2. Change API url in .env.

Setup for React-Native app

  1. Go to the React Native environment setup, then select React Native CLI Quickstart tab.

  2. Install dependencies

cd mobile-app
yarn install
  • 2.1 Only for mac users
cd ios && pod install && cd ../
  1. Copy .env.example as .env.

  2. Change API url in .env.

Training the Model

  1. Download the data from kaggle.
  2. Only keep folders related to Potatoes.
  3. Run Jupyter Notebook in Browser.
jupyter notebook
  1. Open training/potato-disease-training.ipynb in Jupyter Notebook.
  2. In cell #2, update the path to dataset.
  3. Run all the Cells one by one.
  4. Copy the model generated and save it with the version number in the models folder.

Running the API

Using FastAPI

  1. Get inside api folder
cd api
  1. Run the FastAPI Server using uvicorn
uvicorn main:app --reload --host 0.0.0.0
  1. Your API is now running at 0.0.0.0:8000

Using FastAPI & TF Serve

  1. Get inside api folder
cd api
  1. Copy the models.config.example as models.config and update the paths in file.
  2. Run the TF Serve (Update config file path below)
docker run -t --rm -p 8501:8501 -v C:/Code/potato-disease-classification:/potato-disease-classification tensorflow/serving --rest_api_port=8501 --model_config_file=/potato-disease-classification/models.config
  1. Run the FastAPI Server using uvicorn For this you can directly run it from your main.py or main-tf-serving.py using pycharm run option (as shown in the video tutorial) OR you can run it from command prompt as shown below,
uvicorn main-tf-serving:app --reload --host 0.0.0.0
  1. Your API is now running at 0.0.0.0:8000

Running the Frontend

  1. Get inside api folder
cd frontend
  1. Copy the .env.example as .env and update REACT_APP_API_URL to API URL if needed.
  2. Run the frontend
npm run start

Running the app

  1. Get inside mobile-app folder
cd mobile-app
  1. Copy the .env.example as .env and update URL to API URL if needed.

  2. Run the app (android/iOS)

npm run android

or

npm run ios
  1. Creating public (signed APK)

Creating the TF Lite Model

  1. Run Jupyter Notebook in Browser.
jupyter notebook
  1. Open training/tf-lite-converter.ipynb in Jupyter Notebook.
  2. In cell #2, update the path to dataset.
  3. Run all the Cells one by one.
  4. Model would be saved in tf-lite-models folder.

Deploying the TF Lite on GCP

  1. Create a GCP account.
  2. Create a Project on GCP (Keep note of the project id).
  3. Create a GCP bucket.
  4. Upload the potatoes.h5 model in the bucket in the path models/potatos.h5.
  5. Install Google Cloud SDK (Setup instructions).
  6. Authenticate with Google Cloud SDK.
gcloud auth login
  1. Run the deployment script.
cd gcp
gcloud functions deploy predict_lite --runtime python38 --trigger-http --memory 512 --project project_id
  1. Your model is now deployed.
  2. Use Postman to test the GCF using the Trigger URL.

Inspiration: https://cloud.google.com/blog/products/ai-machine-learning/how-to-serve-deep-learning-models-using-tensorflow-2-0-with-cloud-functions

Deploying the TF Model (.h5) on GCP

  1. Create a GCP account.
  2. Create a Project on GCP (Keep note of the project id).
  3. Create a GCP bucket.
  4. Upload the tf .h5 model generate in the bucket in the path models/potato-model.h5.
  5. Install Google Cloud SDK (Setup instructions).
  6. Authenticate with Google Cloud SDK.
gcloud auth login
  1. Run the deployment script.
cd gcp
gcloud functions deploy predict --runtime python38 --trigger-http --memory 512 --project project_id
  1. Your model is now deployed.
  2. Use Postman to test the GCF using the Trigger URL.

Inspiration: https://cloud.google.com/blog/products/ai-machine-learning/how-to-serve-deep-learning-models-using-tensorflow-2-0-with-cloud-functions

Owner
codebasics
codebasics
Collective Multi-type Entity Alignment Between Knowledge Graphs (WWW'20)

CG-MuAlign A reference implementation for "Collective Multi-type Entity Alignment Between Knowledge Graphs", published in WWW 2020. If you find our pa

Bran Zhu 28 Dec 11, 2022
Deep Q-Learning Network in pytorch (not actively maintained)

pytoch-dqn This project is pytorch implementation of Human-level control through deep reinforcement learning and I also plan to implement the followin

Hung-Tu Chen 342 Jan 01, 2023
A library of multi-agent reinforcement learning components and systems

Mava: a research framework for distributed multi-agent reinforcement learning Table of Contents Overview Getting Started Supported Environments System

InstaDeep Ltd 463 Dec 23, 2022
Spectral Temporal Graph Neural Network (StemGNN in short) for Multivariate Time-series Forecasting

Spectral Temporal Graph Neural Network for Multivariate Time-series Forecasting This repository is the official implementation of Spectral Temporal Gr

Microsoft 306 Dec 29, 2022
Api's bulid in Flask perfom to manage Todo Task.

Citymall-task Api's bulid in Flask perfom to manage Todo Task. Installation Requrements : Python: 3.10.0 MongoDB create .env file with variables DB_UR

Aisha Tayyaba 1 Dec 17, 2021
[ACM MM 2021] Yes, "Attention is All You Need", for Exemplar based Colorization

Transformer for Image Colorization This is an implemention for Yes, "Attention Is All You Need", for Exemplar based Colorization, and the current soft

Wang Yin 30 Dec 07, 2022
Enhancing Knowledge Tracing via Adversarial Training

Enhancing Knowledge Tracing via Adversarial Training This repository contains source code for the paper "Enhancing Knowledge Tracing via Adversarial T

Xiaopeng Guo 14 Oct 24, 2022
Aalto-cs-msc-theses - Listing of M.Sc. Theses of the Department of Computer Science at Aalto University

Aalto-CS-MSc-Theses Listing of M.Sc. Theses of the Department of Computer Scienc

Jorma Laaksonen 3 Jan 27, 2022
Convex optimization for fun and profit.

CFMM Optimal Routing This repository contains the code needed to generate the figures used in the paper Optimal Routing for Constant Function Market M

Guillermo Angeris 183 Dec 29, 2022
Wenzhou-Kean University AI-LAB

AI-LAB This is Wenzhou-Kean University AI-LAB. Our research interests are in Computer Vision and Natural Language Processing. Computer Vision Please g

WKU AI-LAB 10 May 05, 2022
Spatiotemporal resampling methods for mlr3

mlr3spatiotempcv Package website: release | dev Spatiotemporal resampling methods for mlr3. This package extends the mlr3 package framework with spati

45 Nov 21, 2022
SC-GlowTTS: an Efficient Zero-Shot Multi-Speaker Text-To-Speech Model

SC-GlowTTS: an Efficient Zero-Shot Multi-Speaker Text-To-Speech Model Edresson Casanova, Christopher Shulby, Eren Gölge, Nicolas Michael Müller, Frede

Edresson Casanova 92 Dec 09, 2022
Re-implementation of the vector capsule with dynamic routing

VectorCapsule Re-implementation of the vector capsule with dynamic routing We implement the vector capsule and dynamic routing via graph neural networ

ZhenchaoTang 10 Feb 10, 2022
Norm-based Analysis of Transformer

Norm-based Analysis of Transformer Implementations for 2 papers introducing to analyze Transformers using vector norms: Kobayashi+'20 Attention is Not

Goro Kobayashi 52 Dec 05, 2022
Implementation of accepted AAAI 2021 paper: Deep Unsupervised Image Hashing by Maximizing Bit Entropy

Deep Unsupervised Image Hashing by Maximizing Bit Entropy This is the PyTorch implementation of accepted AAAI 2021 paper: Deep Unsupervised Image Hash

62 Dec 30, 2022
Breast-Cancer-Prediction

Breast-Cancer-Prediction Trying to predict whether the cancer is benign or malignant using REGRESSION MODELS in Python. Team Members NAME ROLL-NUMBER

Shyamdev Krishnan J 3 Feb 18, 2022
Toward Multimodal Image-to-Image Translation

BicycleGAN Project Page | Paper | Video Pytorch implementation for multimodal image-to-image translation. For example, given the same night image, our

Jun-Yan Zhu 1.4k Dec 22, 2022
A denoising diffusion probabilistic model (DDPM) tailored for conditional generation of protein distograms

Denoising Diffusion Probabilistic Model for Proteins Implementation of Denoising Diffusion Probabilistic Model in Pytorch. It is a new approach to gen

Phil Wang 108 Nov 23, 2022
Tree Nested PyTorch Tensor Lib

DI-treetensor treetensor is a generalized tree-based tensor structure mainly developed by OpenDILab Contributors. Almost all the operation can be supp

OpenDILab 167 Dec 29, 2022
Use of Attention Gates in a Convolutional Neural Network / Medical Image Classification and Segmentation

Attention Gated Networks (Image Classification & Segmentation) Pytorch implementation of attention gates used in U-Net and VGG-16 models. The framewor

Ozan Oktay 1.6k Dec 30, 2022