Potato Disease Classification - Training, Rest APIs, and Frontend to test.

Overview

Potato Disease Classification

Setup for Python:

  1. Install Python (Setup instructions)

  2. Install Python packages

pip3 install -r training/requirements.txt
pip3 install -r api/requirements.txt
  1. Install Tensorflow Serving (Setup instructions)

Setup for ReactJS

  1. Install Nodejs (Setup instructions)
  2. Install NPM (Setup instructions)
  3. Install dependencies
cd frontend
npm install --from-lock-json
npm audit fix
  1. Copy .env.example as .env.

  2. Change API url in .env.

Setup for React-Native app

  1. Go to the React Native environment setup, then select React Native CLI Quickstart tab.

  2. Install dependencies

cd mobile-app
yarn install
  • 2.1 Only for mac users
cd ios && pod install && cd ../
  1. Copy .env.example as .env.

  2. Change API url in .env.

Training the Model

  1. Download the data from kaggle.
  2. Only keep folders related to Potatoes.
  3. Run Jupyter Notebook in Browser.
jupyter notebook
  1. Open training/potato-disease-training.ipynb in Jupyter Notebook.
  2. In cell #2, update the path to dataset.
  3. Run all the Cells one by one.
  4. Copy the model generated and save it with the version number in the models folder.

Running the API

Using FastAPI

  1. Get inside api folder
cd api
  1. Run the FastAPI Server using uvicorn
uvicorn main:app --reload --host 0.0.0.0
  1. Your API is now running at 0.0.0.0:8000

Using FastAPI & TF Serve

  1. Get inside api folder
cd api
  1. Copy the models.config.example as models.config and update the paths in file.
  2. Run the TF Serve (Update config file path below)
docker run -t --rm -p 8501:8501 -v C:/Code/potato-disease-classification:/potato-disease-classification tensorflow/serving --rest_api_port=8501 --model_config_file=/potato-disease-classification/models.config
  1. Run the FastAPI Server using uvicorn For this you can directly run it from your main.py or main-tf-serving.py using pycharm run option (as shown in the video tutorial) OR you can run it from command prompt as shown below,
uvicorn main-tf-serving:app --reload --host 0.0.0.0
  1. Your API is now running at 0.0.0.0:8000

Running the Frontend

  1. Get inside api folder
cd frontend
  1. Copy the .env.example as .env and update REACT_APP_API_URL to API URL if needed.
  2. Run the frontend
npm run start

Running the app

  1. Get inside mobile-app folder
cd mobile-app
  1. Copy the .env.example as .env and update URL to API URL if needed.

  2. Run the app (android/iOS)

npm run android

or

npm run ios
  1. Creating public (signed APK)

Creating the TF Lite Model

  1. Run Jupyter Notebook in Browser.
jupyter notebook
  1. Open training/tf-lite-converter.ipynb in Jupyter Notebook.
  2. In cell #2, update the path to dataset.
  3. Run all the Cells one by one.
  4. Model would be saved in tf-lite-models folder.

Deploying the TF Lite on GCP

  1. Create a GCP account.
  2. Create a Project on GCP (Keep note of the project id).
  3. Create a GCP bucket.
  4. Upload the potatoes.h5 model in the bucket in the path models/potatos.h5.
  5. Install Google Cloud SDK (Setup instructions).
  6. Authenticate with Google Cloud SDK.
gcloud auth login
  1. Run the deployment script.
cd gcp
gcloud functions deploy predict_lite --runtime python38 --trigger-http --memory 512 --project project_id
  1. Your model is now deployed.
  2. Use Postman to test the GCF using the Trigger URL.

Inspiration: https://cloud.google.com/blog/products/ai-machine-learning/how-to-serve-deep-learning-models-using-tensorflow-2-0-with-cloud-functions

Deploying the TF Model (.h5) on GCP

  1. Create a GCP account.
  2. Create a Project on GCP (Keep note of the project id).
  3. Create a GCP bucket.
  4. Upload the tf .h5 model generate in the bucket in the path models/potato-model.h5.
  5. Install Google Cloud SDK (Setup instructions).
  6. Authenticate with Google Cloud SDK.
gcloud auth login
  1. Run the deployment script.
cd gcp
gcloud functions deploy predict --runtime python38 --trigger-http --memory 512 --project project_id
  1. Your model is now deployed.
  2. Use Postman to test the GCF using the Trigger URL.

Inspiration: https://cloud.google.com/blog/products/ai-machine-learning/how-to-serve-deep-learning-models-using-tensorflow-2-0-with-cloud-functions

Owner
codebasics
codebasics
This is a GUI interface which can process forest fire detection, smoke detection and fire segmentation

This is a GUI interface which can process forest fire detection, smoke detection and fire segmentation. Yolov5 is used to detect fire and smoke and unet is used to segment fire.

7 Jan 08, 2023
Scaling Vision with Sparse Mixture of Experts

Scaling Vision with Sparse Mixture of Experts This repository contains the code for training and fine-tuning Sparse MoE models for vision (V-MoE) on I

Google Research 290 Dec 25, 2022
This is a repository with the code for the ACL 2019 paper

The Story of Heads This is the official repo for the following papers: (ACL 2019) Analyzing Multi-Head Self-Attention: Specialized Heads Do the Heavy

231 Nov 15, 2022
Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network.

Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network

111 Dec 27, 2022
Reimplementation of the paper `Human Attention Maps for Text Classification: Do Humans and Neural Networks Focus on the Same Words? (ACL2020)`

Human Attention for Text Classification Re-implementation of the paper Human Attention Maps for Text Classification: Do Humans and Neural Networks Foc

Shunsuke KITADA 15 Dec 13, 2021
Code for "Universal inference meets random projections: a scalable test for log-concavity"

How to use this repository This repository contains code to replicate the results of "Universal inference meets random projections: a scalable test fo

Robin Dunn 0 Nov 21, 2021
Regulatory Instruments for Fair Personalized Pricing.

Fair pricing Source code for WWW 2022 paper Regulatory Instruments for Fair Personalized Pricing. Installation Requirements Linux with Python = 3.6 p

Renzhe Xu 6 Oct 26, 2022
Neural Message Passing for Computer Vision

Neural Message Passing for Quantum Chemistry Implementation of different models of Neural Networks on graphs as explained in the article proposed by G

Pau Riba 310 Nov 07, 2022
tsflex - feature-extraction benchmarking

tsflex - feature-extraction benchmarking This repository withholds the benchmark results and visualization code of the tsflex paper and toolkit. Flow

PreDiCT.IDLab 5 Mar 25, 2022
Tgbox-bench - Simple TGBOX upload speed benchmark

TGBOX Benchmark This script will benchmark upload speed to TGBOX storage. Build

Non 1 Jan 09, 2022
Co-GAIL: Learning Diverse Strategies for Human-Robot Collaboration

CoGAIL Table of Content Overview Installation Dataset Training Evaluation Trained Checkpoints Acknowledgement Citations License Overview This reposito

Jeremy Wang 29 Dec 24, 2022
Code reproduce for paper "Vehicle Re-identification with Viewpoint-aware Metric Learning"

VANET Code reproduce for paper "Vehicle Re-identification with Viewpoint-aware Metric Learning" Introduction This is the implementation of article VAN

EMDATA-AILAB 23 Dec 26, 2022
Job-Recommend-Competition - Vectorwise Interpretable Attentions for Multimodal Tabular Data

SiD - Simple Deep Model Vectorwise Interpretable Attentions for Multimodal Tabul

Jungwoo Park 40 Dec 22, 2022
Plugin for Gaffer providing direct acess to asset from PolyHaven.com. Only HDRIs at the moment, Cycles and Arnold supported

GafferHaven Plugin for Gaffer providing direct acess to asset from PolyHaven.com. Only HDRIs are supported at the moment, in Cycles and Arnold lights.

Jakub Vondra 6 Jan 26, 2022
PyTorch implementation of 'Gen-LaneNet: a generalized and scalable approach for 3D lane detection'

(pytorch) Gen-LaneNet: a generalized and scalable approach for 3D lane detection Introduction This is a pytorch implementation of Gen-LaneNet, which p

Yuliang Guo 233 Jan 06, 2023
External Attention Network

Beyond Self-attention: External Attention using Two Linear Layers for Visual Tasks paper : https://arxiv.org/abs/2105.02358 Jittor code will come soon

MenghaoGuo 357 Dec 11, 2022
Optimized primitives for collective multi-GPU communication

NCCL Optimized primitives for inter-GPU communication. Introduction NCCL (pronounced "Nickel") is a stand-alone library of standard communication rout

NVIDIA Corporation 2k Jan 09, 2023
PyTorch EO aims to make Deep Learning for Earth Observation data easy and accessible to real-world cases and research alike.

Pytorch EO Deep Learning for Earth Observation applications and research. 🚧 This project is in early development, so bugs and breaking changes are ex

earthpulse 28 Aug 25, 2022
Pytorch implementation for M^3L

Learning to Generalize Unseen Domains via Memory-based Multi-Source Meta-Learning for Person Re-Identification (CVPR 2021) Introduction This is the Py

Yuyang Zhao 45 Dec 26, 2022
Code to compute permutation and drop-column importances in Python scikit-learn models

Feature importances for scikit-learn machine learning models By Terence Parr and Kerem Turgutlu. See Explained.ai for more stuff. The scikit-learn Ran

Terence Parr 537 Dec 31, 2022