Potato Disease Classification - Training, Rest APIs, and Frontend to test.

Overview

Potato Disease Classification

Setup for Python:

  1. Install Python (Setup instructions)

  2. Install Python packages

pip3 install -r training/requirements.txt
pip3 install -r api/requirements.txt
  1. Install Tensorflow Serving (Setup instructions)

Setup for ReactJS

  1. Install Nodejs (Setup instructions)
  2. Install NPM (Setup instructions)
  3. Install dependencies
cd frontend
npm install --from-lock-json
npm audit fix
  1. Copy .env.example as .env.

  2. Change API url in .env.

Setup for React-Native app

  1. Go to the React Native environment setup, then select React Native CLI Quickstart tab.

  2. Install dependencies

cd mobile-app
yarn install
  • 2.1 Only for mac users
cd ios && pod install && cd ../
  1. Copy .env.example as .env.

  2. Change API url in .env.

Training the Model

  1. Download the data from kaggle.
  2. Only keep folders related to Potatoes.
  3. Run Jupyter Notebook in Browser.
jupyter notebook
  1. Open training/potato-disease-training.ipynb in Jupyter Notebook.
  2. In cell #2, update the path to dataset.
  3. Run all the Cells one by one.
  4. Copy the model generated and save it with the version number in the models folder.

Running the API

Using FastAPI

  1. Get inside api folder
cd api
  1. Run the FastAPI Server using uvicorn
uvicorn main:app --reload --host 0.0.0.0
  1. Your API is now running at 0.0.0.0:8000

Using FastAPI & TF Serve

  1. Get inside api folder
cd api
  1. Copy the models.config.example as models.config and update the paths in file.
  2. Run the TF Serve (Update config file path below)
docker run -t --rm -p 8501:8501 -v C:/Code/potato-disease-classification:/potato-disease-classification tensorflow/serving --rest_api_port=8501 --model_config_file=/potato-disease-classification/models.config
  1. Run the FastAPI Server using uvicorn For this you can directly run it from your main.py or main-tf-serving.py using pycharm run option (as shown in the video tutorial) OR you can run it from command prompt as shown below,
uvicorn main-tf-serving:app --reload --host 0.0.0.0
  1. Your API is now running at 0.0.0.0:8000

Running the Frontend

  1. Get inside api folder
cd frontend
  1. Copy the .env.example as .env and update REACT_APP_API_URL to API URL if needed.
  2. Run the frontend
npm run start

Running the app

  1. Get inside mobile-app folder
cd mobile-app
  1. Copy the .env.example as .env and update URL to API URL if needed.

  2. Run the app (android/iOS)

npm run android

or

npm run ios
  1. Creating public (signed APK)

Creating the TF Lite Model

  1. Run Jupyter Notebook in Browser.
jupyter notebook
  1. Open training/tf-lite-converter.ipynb in Jupyter Notebook.
  2. In cell #2, update the path to dataset.
  3. Run all the Cells one by one.
  4. Model would be saved in tf-lite-models folder.

Deploying the TF Lite on GCP

  1. Create a GCP account.
  2. Create a Project on GCP (Keep note of the project id).
  3. Create a GCP bucket.
  4. Upload the potatoes.h5 model in the bucket in the path models/potatos.h5.
  5. Install Google Cloud SDK (Setup instructions).
  6. Authenticate with Google Cloud SDK.
gcloud auth login
  1. Run the deployment script.
cd gcp
gcloud functions deploy predict_lite --runtime python38 --trigger-http --memory 512 --project project_id
  1. Your model is now deployed.
  2. Use Postman to test the GCF using the Trigger URL.

Inspiration: https://cloud.google.com/blog/products/ai-machine-learning/how-to-serve-deep-learning-models-using-tensorflow-2-0-with-cloud-functions

Deploying the TF Model (.h5) on GCP

  1. Create a GCP account.
  2. Create a Project on GCP (Keep note of the project id).
  3. Create a GCP bucket.
  4. Upload the tf .h5 model generate in the bucket in the path models/potato-model.h5.
  5. Install Google Cloud SDK (Setup instructions).
  6. Authenticate with Google Cloud SDK.
gcloud auth login
  1. Run the deployment script.
cd gcp
gcloud functions deploy predict --runtime python38 --trigger-http --memory 512 --project project_id
  1. Your model is now deployed.
  2. Use Postman to test the GCF using the Trigger URL.

Inspiration: https://cloud.google.com/blog/products/ai-machine-learning/how-to-serve-deep-learning-models-using-tensorflow-2-0-with-cloud-functions

Owner
codebasics
codebasics
QT Py Media Knob using rotary encoder & neopixel ring

QTPy-Knob QT Py USB Media Knob using rotary encoder & neopixel ring The QTPy-Knob features: Media knob for volume up/down/mute with "qtpy-knob.py" Cir

Tod E. Kurt 56 Dec 30, 2022
Meshed-Memory Transformer for Image Captioning. CVPR 2020

M²: Meshed-Memory Transformer This repository contains the reference code for the paper Meshed-Memory Transformer for Image Captioning (CVPR 2020). Pl

AImageLab 422 Dec 28, 2022
HeatNet is a python package that provides tools to build, train and evaluate neural networks designed to predict extreme heat wave events globally on daily to subseasonal timescales.

HeatNet HeatNet is a python package that provides tools to build, train and evaluate neural networks designed to predict extreme heat wave events glob

Google Research 6 Jul 07, 2022
PyTorch implementation of normalizing flow models

PyTorch implementation of normalizing flow models

Vincent Stimper 242 Jan 02, 2023
这是一个利用facenet和retinaface实现人脸识别的库,可以进行在线的人脸识别。

Facenet+Retinaface:人脸识别模型在Pytorch当中的实现 目录 注意事项 Attention 所需环境 Environment 文件下载 Download 预测步骤 How2predict 参考资料 Reference 注意事项 该库中包含了两个网络,分别是retinaface和

Bubbliiiing 102 Dec 30, 2022
StarGAN2 for practice

StarGAN2 for practice This version of StarGAN2 (coined as 'Post-modern Style Transfer') is intended mostly for fellow artists, who rarely look at scie

vadim epstein 87 Sep 24, 2022
Unofficial implementation of Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segmentation

Point-Unet This is an unofficial implementation of the MICCAI 2021 paper Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segment

Namt0d 9 Dec 07, 2022
Informal Persian Universal Dependency Treebank

Informal Persian Universal Dependency Treebank (iPerUDT) Informal Persian Universal Dependency Treebank, consisting of 3000 sentences and 54,904 token

Roya Kabiri 0 Jan 05, 2022
This is the repository for our paper SimpleTrack: Understanding and Rethinking 3D Multi-object Tracking

SimpleTrack This is the repository for our paper SimpleTrack: Understanding and Rethinking 3D Multi-object Tracking. We are still working on writing t

TuSimple 189 Dec 26, 2022
Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Shapes (CVPR 2021 Oral)

Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Surfaces Official code release for NGLOD. For technical details, please refer t

659 Dec 27, 2022
NVIDIA container runtime

nvidia-container-runtime A modified version of runc adding a custom pre-start hook to all containers. If environment variable NVIDIA_VISIBLE_DEVICES i

NVIDIA Corporation 938 Jan 06, 2023
The pytorch implementation of SOKD (BMVC2021).

Semi-Online Knowledge Distillation Implementations of SOKD. Requirements This repo was tested with Python 3.8, PyTorch 1.5.1, torchvision 0.6.1, CUDA

4 Dec 19, 2021
Line-level Handwritten Text Recognition (HTR) system implemented with TensorFlow.

Line-level Handwritten Text Recognition with TensorFlow This model is an extended version of the Simple HTR system implemented by @Harald Scheidl and

Hoàng Tùng Lâm (Linus) 72 May 07, 2022
Instant-nerf-pytorch - NeRF trained SUPER FAST in pytorch

instant-nerf-pytorch This is WORK IN PROGRESS, please feel free to contribute vi

94 Nov 22, 2022
A python package simulating the quasi-2D pseudospin-1/2 Gross-Pitaevskii equation with NVIDIA GPU acceleration.

A python package simulating the quasi-2D pseudospin-1/2 Gross-Pitaevskii equation with NVIDIA GPU acceleration. Introduction spinor-gpe is high-level,

2 Sep 20, 2022
When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset of 53,000+ Legal Holdings

When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset of 53,000+ Legal Holdings This is the repository for t

RegLab 39 Jan 07, 2023
Accelerated NLP pipelines for fast inference on CPU and GPU. Built with Transformers, Optimum and ONNX Runtime.

Optimum Transformers Accelerated NLP pipelines for fast inference 🚀 on CPU and GPU. Built with 🤗 Transformers, Optimum and ONNX runtime. Installatio

Aleksey Korshuk 115 Dec 16, 2022
Summary of related papers on visual attention

This repo is built for paper: Attention Mechanisms in Computer Vision: A Survey paper Vision-Attention-Papers Channel attention Spatial attention Temp

MenghaoGuo 2.1k Dec 30, 2022
Python Blood Vessel Topology Analysis

Python Blood Vessel Topology Analysis This repository is not being updated anymore. The new version of PyVesTo is called PyVaNe and is available at ht

6 Nov 15, 2022
Data pipelines for both TensorFlow and PyTorch!

rapidnlp-datasets Data pipelines for both TensorFlow and PyTorch ! If you want to load public datasets, try: tensorflow/datasets huggingface/datasets

1 Dec 08, 2021