Keras code and weights files for popular deep learning models.

Overview

Trained image classification models for Keras

THIS REPOSITORY IS DEPRECATED. USE THE MODULE keras.applications INSTEAD.

Pull requests will not be reviewed nor merged. Direct any PRs to keras.applications. Issues are not monitored either.


This repository contains code for the following Keras models:

  • VGG16
  • VGG19
  • ResNet50
  • Inception v3
  • CRNN for music tagging

All architectures are compatible with both TensorFlow and Theano, and upon instantiation the models will be built according to the image dimension ordering set in your Keras configuration file at ~/.keras/keras.json. For instance, if you have set image_dim_ordering=tf, then any model loaded from this repository will get built according to the TensorFlow dimension ordering convention, "Width-Height-Depth".

Pre-trained weights can be automatically loaded upon instantiation (weights='imagenet' argument in model constructor for all image models, weights='msd' for the music tagging model). Weights are automatically downloaded if necessary, and cached locally in ~/.keras/models/.

Examples

Classify images

from resnet50 import ResNet50
from keras.preprocessing import image
from imagenet_utils import preprocess_input, decode_predictions

model = ResNet50(weights='imagenet')

img_path = 'elephant.jpg'
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)

preds = model.predict(x)
print('Predicted:', decode_predictions(preds))
# print: [[u'n02504458', u'African_elephant']]

Extract features from images

from vgg16 import VGG16
from keras.preprocessing import image
from imagenet_utils import preprocess_input

model = VGG16(weights='imagenet', include_top=False)

img_path = 'elephant.jpg'
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)

features = model.predict(x)

Extract features from an arbitrary intermediate layer

from vgg19 import VGG19
from keras.preprocessing import image
from imagenet_utils import preprocess_input
from keras.models import Model

base_model = VGG19(weights='imagenet')
model = Model(input=base_model.input, output=base_model.get_layer('block4_pool').output)

img_path = 'elephant.jpg'
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)

block4_pool_features = model.predict(x)

References

Additionally, don't forget to cite Keras if you use these models.

License

Comments
  • Transfer learning with Resnet50 fail with Exception

    Transfer learning with Resnet50 fail with Exception

    Hi, I am using Resnet50 to do transfer learning. The backend is tensorflow. I tried to stack three more layers on top of the Resnet but fail with following error:

    Exception: The shape of the input to "Flatten" is not fully defined (got (None, None, 2048). 
    Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.
    

    The code for stacking two models are as following:

        model = ResNet50(include_top=False, weights='imagenet')
    
        top_model = Sequential()
        top_model.add(Flatten(input_shape=model.output_shape[1:]))
        top_model.add(Dense(256, activation='relu'))
        top_model.add(Dropout(0.5))
        top_model.add(Dense(1, activation='sigmoid'))
        top_model.load_weights(top_model_weights_path)
    
        model = Model(input=model.input, output=top_model(model.output))
    
    opened by MrXu 5
  • [WIP] autocolorize model

    [WIP] autocolorize model

    opened by kashif 5
  • AttributeError: 'module' object has no attribute 'image_data_format'

    AttributeError: 'module' object has no attribute 'image_data_format'

    >>> from resnet50 import ResNet50
    Using TensorFlow backend.
    I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcublas.so.8.0 locally
    I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcudnn.so.5 locally
    I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcufft.so.8.0 locally
    I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcuda.so.1 locally
    I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcurand.so.8.0 locally
    >>> model = ResNet50(weights='imagenet')
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
      File "resnet50.py", line 192, in ResNet50
        data_format=K.image_data_format(),
    AttributeError: 'module' object has no attribute 'image_data_format'
    >>> from keras.preprocessing import image
    >>> from imagenet_utils import preprocess_input, decode_predictions
    >>> model = ResNet50(weights='imagenet')
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
      File "resnet50.py", line 192, in ResNet50
        data_format=K.image_data_format(),
    AttributeError: 'module' object has no attribute 'image_data_format'
    

    My System

    • Tensorflow 1.0.0
    • Keras 1.2.2
    opened by MartinThoma 4
  • Inception not working as feature extractor

    Inception not working as feature extractor

    when calling predict:

    Traceback (most recent call last):
      File "/home/omar/Pycharm_ubuntu_v2/Spatial_v2_Aug-2016/features_from_keras_tool_RGB_final.py", line 72, in <module>
        model = InceptionV3(weights='imagenet', include_top=False)
      File "/home/omar/Pycharm_ubuntu_v2/Spatial_v2_Aug-2016/inception_v3.py", line 272, in InceptionV3
        model.load_weights(weights_path)
      File "/usr/local/lib/python2.7/dist-packages/keras/engine/topology.py", line 2446, in load_weights
        self.load_weights_from_hdf5_group(f)
      File "/usr/local/lib/python2.7/dist-packages/keras/engine/topology.py", line 2518, in load_weights_from_hdf5_group
        ' elements.')
    Exception: Layer #162 (named "batchnormalization_79" in the current model) was found to correspond to layer convolution2d_77 in the save file. However the new layer batchnormalization_79 expects 4 weights, but the saved weights have 2 elements.
    
    Process finished with exit code 1
    
    opened by omarcr 4
  • Inception-v3 fine-tuning

    Inception-v3 fine-tuning

    opened by nournia 4
  • KeyError: “Can’t open attribute (Can’t locate attribute: ‘layer_names’)

    KeyError: “Can’t open attribute (Can’t locate attribute: ‘layer_names’)

    I tried to run this code

    from vgg16 import VGG16
    from keras.preprocessing import image
    from imagenet_utils import preprocess_input
    
    model = VGG16(weights='imagenet', include_top=False)
    
    img_path = 'elephant.jpg'
    img = image.load_img(img_path, target_size=(224, 224))
    x = image.img_to_array(img)
    x = np.expand_dims(x, axis=0)
    x = preprocess_input(x)
    
    features = model.predict(x)
    

    but i got KeyError: “Can’t open attribute (Can’t locate attribute: ‘layer_names’) what should i do?

    opened by lightwolfz 3
  • vgg_face model,only compatible with Theano

    vgg_face model,only compatible with Theano

    I've already converted the caffe vgg_face model to keras,but it's only compatible with Theano. I've also tried many times to use the convert_kernel function in keras.utils.np_utils to make it compatible with Tensorflow,but I can't get the right result.

    opened by EncodeTS 3
  • ResNet50 Batch Normalization Mode

    ResNet50 Batch Normalization Mode

    Would it be reasonable to add an optional batch normalization mode argument to ResNet50? Allowing for mode = 2 would enable ResNet50 to be used in a shared fashion. I think the same BN initializations could be used in mode = 2. Happy to do a PR if folks think it's worthwhile.

    opened by jmhessel 3
  • Mean image for VGG-16 net

    Mean image for VGG-16 net

    Are the weight files here as same as the original VGG-16 net? There is a mean image file with VGG-16's Caffe Model. Should I still apply it for the best result?

    opened by duguyue100 2
  • inception model fails to load pretrained weights

    inception model fails to load pretrained weights

    I have used the resnet and vgg models successfully but cannot use the freshly released inception weights.

    Keras is on the latest master commit from github and i'm using anaconda python 3.5. -- Edit it was not on the 'latest' commit. It was on a commit from several days ago when I first cloned this repo; didn't realize it needed to be updated again.

    Thoughts?

    from inception_v3 import InceptionV3
    from keras.preprocessing import image
    from imagenet_utils import preprocess_input
    
    model = InceptionV3(weights='imagenet', include_top=False)
    
    Downloading data from https://github.com/fchollet/deep-learning-models/releases/download/v0.2/inception_v3_weights_th_dim_ordering_th_kernels_notop.h5
    86679552/86916664 [============================>.] - ETA: 0s
    ---------------------------------------------------------------------------
    Exception                                 Traceback (most recent call last)
    <ipython-input-5-881bb296c35e> in <module>()
          3 from imagenet_utils import preprocess_input
          4 
    ----> 5 model = InceptionV3(weights='imagenet', include_top=False)
    
    /home/agonzales/git/image_classifier/src/inception_v3.py in InceptionV3(include_top, weights, input_tensor)
        279                                         cache_subdir='models',
        280                                         md5_hash='79aaa90ab4372b4593ba3df64e142f05')
    --> 281             model.load_weights(weights_path)
        282             if K.backend() == 'tensorflow':
        283                 warnings.warn('You are using the TensorFlow backend, yet you '
    
    /home/agonzales/anaconda3/envs/keras_extract/lib/python3.5/site-packages/Keras-1.0.6-py3.5.egg/keras/engine/topology.py in load_weights(self, filepath)
       2444         if 'layer_names' not in f.attrs and 'model_weights' in f:
       2445             f = f['model_weights']
    -> 2446         self.load_weights_from_hdf5_group(f)
       2447         if hasattr(f, 'close'):
       2448             f.close()
    
    /home/agonzales/anaconda3/envs/keras_extract/lib/python3.5/site-packages/Keras-1.0.6-py3.5.egg/keras/engine/topology.py in load_weights_from_hdf5_group(self, f)
       2516                                     ' weights, but the saved weights have ' +
       2517                                     str(len(weight_values)) +
    -> 2518                                     ' elements.')
       2519                 weight_value_tuples += zip(symbolic_weights, weight_values)
       2520             K.batch_set_value(weight_value_tuples)
    
    Exception: Layer #162 (named "batchnormalization_267" in the current model) was found to correspond to layer convolution2d_77 in the save file. However the new layer batchnormalization_267 expects 4 weights, but the saved weights have 2 elements.
    
    opened by binaryaaron 2
  • SignatureDoesNotMatch when downloading the releases v0.7

    SignatureDoesNotMatch when downloading the releases v0.7

    Hello,

    We cannot fetch the file from the following URL.

    https://github.com/fchollet/deep-learning-models/releases/download/v0.7/inception_resnet_v2_weights_tf_dim_ordering_tf_kernels_notop.h5

    The response is as followed

    <Code>SignatureDoesNotMatch</Code>
    <Message>The request signature we calculated does not match the signature you provided. Check your key and signing method.</Message>
    
    opened by lukkiddd 1
  • ValueError: Error when checking input: expected vgg16_input to have shape (244, 244, 3) but got array with shape (224, 224, 3)

    ValueError: Error when checking input: expected vgg16_input to have shape (244, 244, 3) but got array with shape (224, 224, 3)

    Hello I have written the following code:

    validate on val set predictions = model.predict(X_val_prep) predictions = [1 if x>0.5 else 0 for x in predictions]

    accuracy = accuracy_score(y_val, predictions) print('Val Accuracy = %.2f' % accuracy)

    confusion_mtx = confusion_matrix(y_val, predictions) cm = plot_confusion_matrix(confusion_mtx, classes = list(labels.items()), normalize=False)

    ValueError: Error when checking input: expected vgg16_input to have shape (244, 244, 3) but got array with shape (224, 224, 3)

    Could you help me how I should tackle it? thank u very much.

    opened by Aisha5 0
  • NameError: name 'X_val_prep' is not defined

    NameError: name 'X_val_prep' is not defined

    Hello I have written the following code:

    validate on val set predictions = model.predict(X_val_prep) predictions = [1 if x>0.5 else 0 for x in predictions]

    accuracy = accuracy_score(y_val, predictions) print('Val Accuracy = %.2f' % accuracy)

    confusion_mtx = confusion_matrix(y_val, predictions) cm = plot_confusion_matrix(confusion_mtx, classes = list(labels.items()), normalize=False)

    NameError: name 'X_val_prep' is not defined

    Could you help me how I should tackle it? thank u very much.

    opened by Aisha5 0
  • Loading Keras Model for Multiprocess

    Loading Keras Model for Multiprocess

    Hi, I want to load a keras model in parent process and access by child process but i got many issue.what is correct way to do this.is it possible or not?

    opened by nitishcs007 0
  • keras applications

    keras applications

    Sorry to trouble you, I have a problem about training the keras model.Recently,I used the existing models from keras applications like VGG16,VGG19. The applications provide the existing models which are converted from caffe model. I reproduced the result for inference. But when I want to use the VGG16 model with weights retrain imagenet data,the acc was rised from 0,not a higher acc. First,I think the reason is that tfrecords convert the raw image to (-1.1) but caffe used the raw image which substract mean and convert RGB. Soon, I convert the data in tfrecords look like the data in caffe, but the acc is low too... Second I replace the categorical_crossentropy with sparse_categorical_crossentropy and cancell the one-hot coding. But it doen't work. I'm sorry for my English is elementary level.

    opened by chenglong19029001 0
  • No normalization in prepocess_input function

    No normalization in prepocess_input function

    In the file imagenet_utils.py, the prepocess_input function doesn't contain a normalization procedure, so if I am about to use pretrained VGG19, is it necessary to add this normalization procedure. What's more, why should RGB be changed to BGR. In other websites, the mean value of an image is [123.68, 116.779, 103.939] for RGB, but in this file, it is reversed. which mean value is suitable for the VGG19 in the data format RGB? Do I need to change the image format from RGB to BGR if I want to transfer VGG19 to other tasks? `def preprocess_input(x, dim_ordering='default'): if dim_ordering == 'default': dim_ordering = K.image_dim_ordering() assert dim_ordering in {'tf', 'th'}

    if dim_ordering == 'th':
        x[:, 0, :, :] -= 103.939
        x[:, 1, :, :] -= 116.779
        x[:, 2, :, :] -= 123.68
        # 'RGB'->'BGR'
        x = x[:, ::-1, :, :]
    else:
        x[:, :, :, 0] -= 103.939
        x[:, :, :, 1] -= 116.779
        x[:, :, :, 2] -= 123.68
        # 'RGB'->'BGR'
        x = x[:, :, :, ::-1]
    return x`
    
    opened by Schizophreni 1
Releases(v0.8)
Owner
François Chollet
François Chollet
A Quick and Dirty Progressive Neural Network written in TensorFlow.

prog_nn .▄▄ · ▄· ▄▌ ▐ ▄ ▄▄▄· ▐ ▄ ▐█ ▀. ▐█▪██▌•█▌▐█▐█ ▄█▪ •█▌▐█ ▄▀▀▀█▄▐█▌▐█▪▐█▐▐▌ ██▀

SynPon 53 Dec 12, 2022
H&M Fashion Image similarity search with Weaviate and DocArray

H&M Fashion Image similarity search with Weaviate and DocArray This example shows how to do image similarity search using DocArray and Weaviate as Doc

Laura Ham 18 Aug 11, 2022
:hot_pepper: R²SQL: "Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing." (AAAI 2021)

R²SQL The PyTorch implementation of paper Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing. (AAAI 2021) Requirement

huybery 60 Dec 31, 2022
The official implementation of Equalization Loss for Long-Tailed Object Recognition (CVPR 2020) based on Detectron2

Equalization Loss for Long-Tailed Object Recognition Jingru Tan, Changbao Wang, Buyu Li, Quanquan Li, Wanli Ouyang, Changqing Yin, Junjie Yan ⚠️ We re

Jingru Tan 197 Dec 25, 2022
A PaddlePaddle implementation of Time Interval Aware Self-Attentive Sequential Recommendation.

TiSASRec.paddle A PaddlePaddle implementation of Time Interval Aware Self-Attentive Sequential Recommendation. Introduction 论文:Time Interval Aware Sel

Paddorch 2 Nov 28, 2021
Data pipelines for both TensorFlow and PyTorch!

rapidnlp-datasets Data pipelines for both TensorFlow and PyTorch ! If you want to load public datasets, try: tensorflow/datasets huggingface/datasets

1 Dec 08, 2021
InsCLR: Improving Instance Retrieval with Self-Supervision

InsCLR: Improving Instance Retrieval with Self-Supervision This is an official PyTorch implementation of the InsCLR paper. Download Dataset Dataset Im

Zelu Deng 25 Aug 30, 2022
Code and data for ACL2021 paper Cross-Lingual Abstractive Summarization with Limited Parallel Resources.

Multi-Task Framework for Cross-Lingual Abstractive Summarization (MCLAS) The code for ACL2021 paper Cross-Lingual Abstractive Summarization with Limit

Yu Bai 43 Nov 07, 2022
Provide baselines and evaluation metrics of the task: traffic flow prediction

Note: This repo is adpoted from https://github.com/UNIMIBInside/Smart-Mobility-Prediction. Due to technical reasons, I did not fork their code. Introd

Zhangzhi Peng 11 Nov 02, 2022
Pointer-generator - Code for the ACL 2017 paper Get To The Point: Summarization with Pointer-Generator Networks

Note: this code is no longer actively maintained. However, feel free to use the Issues section to discuss the code with other users. Some users have u

Abi See 2.1k Jan 04, 2023
PySLM Python Library for Selective Laser Melting and Additive Manufacturing

PySLM Python Library for Selective Laser Melting and Additive Manufacturing PySLM is a Python library for supporting development of input files used i

Dr Luke Parry 35 Dec 27, 2022
This repository is related to an Arabic tutorial, within the tutorial we discuss the common data structure and algorithms and their worst and best case for each, then implement the code using Python.

Data Structure and Algorithms with Python This repository is related to the Arabic tutorial here, within the tutorial we discuss the common data struc

Mohamed Ayman 33 Dec 02, 2022
[NeurIPS 2021] Source code for the paper "Qu-ANTI-zation: Exploiting Neural Network Quantization for Achieving Adversarial Outcomes"

Qu-ANTI-zation This repository contains the code for reproducing the results of our paper: Qu-ANTI-zation: Exploiting Quantization Artifacts for Achie

Secure AI Systems Lab 8 Mar 26, 2022
A curated list of awesome Model-Based RL resources

Awesome Model-Based Reinforcement Learning This is a collection of research papers for model-based reinforcement learning (mbrl). And the repository w

OpenDILab 427 Jan 03, 2023
ML-PersonalWork - Big assignment PersonalWork in Machine Learning, 2021 autumn BUAA.

ML-PersonalWork - Big assignment PersonalWork in Machine Learning, 2021 autumn BUAA.

Snapdragon Lee 2 Dec 16, 2022
The official code repo of "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound Classification and Detection"

Hierarchical Token Semantic Audio Transformer Introduction The Code Repository for "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound

Knut(Ke) Chen 134 Jan 01, 2023
Project page for our ICCV 2021 paper "The Way to my Heart is through Contrastive Learning"

The Way to my Heart is through Contrastive Learning: Remote Photoplethysmography from Unlabelled Video This is the official project page of our ICCV 2

36 Jan 06, 2023
Official code release for: EditGAN: High-Precision Semantic Image Editing

Official code release for: EditGAN: High-Precision Semantic Image Editing

565 Jan 05, 2023
[IJCAI-2021] A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation"

DataFree A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation" Authors: Gongfa

ZJU-VIPA 47 Jan 09, 2023