Keras code and weights files for popular deep learning models.

Overview

Trained image classification models for Keras

THIS REPOSITORY IS DEPRECATED. USE THE MODULE keras.applications INSTEAD.

Pull requests will not be reviewed nor merged. Direct any PRs to keras.applications. Issues are not monitored either.


This repository contains code for the following Keras models:

  • VGG16
  • VGG19
  • ResNet50
  • Inception v3
  • CRNN for music tagging

All architectures are compatible with both TensorFlow and Theano, and upon instantiation the models will be built according to the image dimension ordering set in your Keras configuration file at ~/.keras/keras.json. For instance, if you have set image_dim_ordering=tf, then any model loaded from this repository will get built according to the TensorFlow dimension ordering convention, "Width-Height-Depth".

Pre-trained weights can be automatically loaded upon instantiation (weights='imagenet' argument in model constructor for all image models, weights='msd' for the music tagging model). Weights are automatically downloaded if necessary, and cached locally in ~/.keras/models/.

Examples

Classify images

from resnet50 import ResNet50
from keras.preprocessing import image
from imagenet_utils import preprocess_input, decode_predictions

model = ResNet50(weights='imagenet')

img_path = 'elephant.jpg'
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)

preds = model.predict(x)
print('Predicted:', decode_predictions(preds))
# print: [[u'n02504458', u'African_elephant']]

Extract features from images

from vgg16 import VGG16
from keras.preprocessing import image
from imagenet_utils import preprocess_input

model = VGG16(weights='imagenet', include_top=False)

img_path = 'elephant.jpg'
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)

features = model.predict(x)

Extract features from an arbitrary intermediate layer

from vgg19 import VGG19
from keras.preprocessing import image
from imagenet_utils import preprocess_input
from keras.models import Model

base_model = VGG19(weights='imagenet')
model = Model(input=base_model.input, output=base_model.get_layer('block4_pool').output)

img_path = 'elephant.jpg'
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)

block4_pool_features = model.predict(x)

References

Additionally, don't forget to cite Keras if you use these models.

License

Comments
  • Transfer learning with Resnet50 fail with Exception

    Transfer learning with Resnet50 fail with Exception

    Hi, I am using Resnet50 to do transfer learning. The backend is tensorflow. I tried to stack three more layers on top of the Resnet but fail with following error:

    Exception: The shape of the input to "Flatten" is not fully defined (got (None, None, 2048). 
    Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.
    

    The code for stacking two models are as following:

        model = ResNet50(include_top=False, weights='imagenet')
    
        top_model = Sequential()
        top_model.add(Flatten(input_shape=model.output_shape[1:]))
        top_model.add(Dense(256, activation='relu'))
        top_model.add(Dropout(0.5))
        top_model.add(Dense(1, activation='sigmoid'))
        top_model.load_weights(top_model_weights_path)
    
        model = Model(input=model.input, output=top_model(model.output))
    
    opened by MrXu 5
  • [WIP] autocolorize model

    [WIP] autocolorize model

    opened by kashif 5
  • AttributeError: 'module' object has no attribute 'image_data_format'

    AttributeError: 'module' object has no attribute 'image_data_format'

    >>> from resnet50 import ResNet50
    Using TensorFlow backend.
    I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcublas.so.8.0 locally
    I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcudnn.so.5 locally
    I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcufft.so.8.0 locally
    I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcuda.so.1 locally
    I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcurand.so.8.0 locally
    >>> model = ResNet50(weights='imagenet')
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
      File "resnet50.py", line 192, in ResNet50
        data_format=K.image_data_format(),
    AttributeError: 'module' object has no attribute 'image_data_format'
    >>> from keras.preprocessing import image
    >>> from imagenet_utils import preprocess_input, decode_predictions
    >>> model = ResNet50(weights='imagenet')
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
      File "resnet50.py", line 192, in ResNet50
        data_format=K.image_data_format(),
    AttributeError: 'module' object has no attribute 'image_data_format'
    

    My System

    • Tensorflow 1.0.0
    • Keras 1.2.2
    opened by MartinThoma 4
  • Inception not working as feature extractor

    Inception not working as feature extractor

    when calling predict:

    Traceback (most recent call last):
      File "/home/omar/Pycharm_ubuntu_v2/Spatial_v2_Aug-2016/features_from_keras_tool_RGB_final.py", line 72, in <module>
        model = InceptionV3(weights='imagenet', include_top=False)
      File "/home/omar/Pycharm_ubuntu_v2/Spatial_v2_Aug-2016/inception_v3.py", line 272, in InceptionV3
        model.load_weights(weights_path)
      File "/usr/local/lib/python2.7/dist-packages/keras/engine/topology.py", line 2446, in load_weights
        self.load_weights_from_hdf5_group(f)
      File "/usr/local/lib/python2.7/dist-packages/keras/engine/topology.py", line 2518, in load_weights_from_hdf5_group
        ' elements.')
    Exception: Layer #162 (named "batchnormalization_79" in the current model) was found to correspond to layer convolution2d_77 in the save file. However the new layer batchnormalization_79 expects 4 weights, but the saved weights have 2 elements.
    
    Process finished with exit code 1
    
    opened by omarcr 4
  • Inception-v3 fine-tuning

    Inception-v3 fine-tuning

    opened by nournia 4
  • KeyError: “Can’t open attribute (Can’t locate attribute: ‘layer_names’)

    KeyError: “Can’t open attribute (Can’t locate attribute: ‘layer_names’)

    I tried to run this code

    from vgg16 import VGG16
    from keras.preprocessing import image
    from imagenet_utils import preprocess_input
    
    model = VGG16(weights='imagenet', include_top=False)
    
    img_path = 'elephant.jpg'
    img = image.load_img(img_path, target_size=(224, 224))
    x = image.img_to_array(img)
    x = np.expand_dims(x, axis=0)
    x = preprocess_input(x)
    
    features = model.predict(x)
    

    but i got KeyError: “Can’t open attribute (Can’t locate attribute: ‘layer_names’) what should i do?

    opened by lightwolfz 3
  • vgg_face model,only compatible with Theano

    vgg_face model,only compatible with Theano

    I've already converted the caffe vgg_face model to keras,but it's only compatible with Theano. I've also tried many times to use the convert_kernel function in keras.utils.np_utils to make it compatible with Tensorflow,but I can't get the right result.

    opened by EncodeTS 3
  • ResNet50 Batch Normalization Mode

    ResNet50 Batch Normalization Mode

    Would it be reasonable to add an optional batch normalization mode argument to ResNet50? Allowing for mode = 2 would enable ResNet50 to be used in a shared fashion. I think the same BN initializations could be used in mode = 2. Happy to do a PR if folks think it's worthwhile.

    opened by jmhessel 3
  • Mean image for VGG-16 net

    Mean image for VGG-16 net

    Are the weight files here as same as the original VGG-16 net? There is a mean image file with VGG-16's Caffe Model. Should I still apply it for the best result?

    opened by duguyue100 2
  • inception model fails to load pretrained weights

    inception model fails to load pretrained weights

    I have used the resnet and vgg models successfully but cannot use the freshly released inception weights.

    Keras is on the latest master commit from github and i'm using anaconda python 3.5. -- Edit it was not on the 'latest' commit. It was on a commit from several days ago when I first cloned this repo; didn't realize it needed to be updated again.

    Thoughts?

    from inception_v3 import InceptionV3
    from keras.preprocessing import image
    from imagenet_utils import preprocess_input
    
    model = InceptionV3(weights='imagenet', include_top=False)
    
    Downloading data from https://github.com/fchollet/deep-learning-models/releases/download/v0.2/inception_v3_weights_th_dim_ordering_th_kernels_notop.h5
    86679552/86916664 [============================>.] - ETA: 0s
    ---------------------------------------------------------------------------
    Exception                                 Traceback (most recent call last)
    <ipython-input-5-881bb296c35e> in <module>()
          3 from imagenet_utils import preprocess_input
          4 
    ----> 5 model = InceptionV3(weights='imagenet', include_top=False)
    
    /home/agonzales/git/image_classifier/src/inception_v3.py in InceptionV3(include_top, weights, input_tensor)
        279                                         cache_subdir='models',
        280                                         md5_hash='79aaa90ab4372b4593ba3df64e142f05')
    --> 281             model.load_weights(weights_path)
        282             if K.backend() == 'tensorflow':
        283                 warnings.warn('You are using the TensorFlow backend, yet you '
    
    /home/agonzales/anaconda3/envs/keras_extract/lib/python3.5/site-packages/Keras-1.0.6-py3.5.egg/keras/engine/topology.py in load_weights(self, filepath)
       2444         if 'layer_names' not in f.attrs and 'model_weights' in f:
       2445             f = f['model_weights']
    -> 2446         self.load_weights_from_hdf5_group(f)
       2447         if hasattr(f, 'close'):
       2448             f.close()
    
    /home/agonzales/anaconda3/envs/keras_extract/lib/python3.5/site-packages/Keras-1.0.6-py3.5.egg/keras/engine/topology.py in load_weights_from_hdf5_group(self, f)
       2516                                     ' weights, but the saved weights have ' +
       2517                                     str(len(weight_values)) +
    -> 2518                                     ' elements.')
       2519                 weight_value_tuples += zip(symbolic_weights, weight_values)
       2520             K.batch_set_value(weight_value_tuples)
    
    Exception: Layer #162 (named "batchnormalization_267" in the current model) was found to correspond to layer convolution2d_77 in the save file. However the new layer batchnormalization_267 expects 4 weights, but the saved weights have 2 elements.
    
    opened by binaryaaron 2
  • SignatureDoesNotMatch when downloading the releases v0.7

    SignatureDoesNotMatch when downloading the releases v0.7

    Hello,

    We cannot fetch the file from the following URL.

    https://github.com/fchollet/deep-learning-models/releases/download/v0.7/inception_resnet_v2_weights_tf_dim_ordering_tf_kernels_notop.h5

    The response is as followed

    <Code>SignatureDoesNotMatch</Code>
    <Message>The request signature we calculated does not match the signature you provided. Check your key and signing method.</Message>
    
    opened by lukkiddd 1
  • ValueError: Error when checking input: expected vgg16_input to have shape (244, 244, 3) but got array with shape (224, 224, 3)

    ValueError: Error when checking input: expected vgg16_input to have shape (244, 244, 3) but got array with shape (224, 224, 3)

    Hello I have written the following code:

    validate on val set predictions = model.predict(X_val_prep) predictions = [1 if x>0.5 else 0 for x in predictions]

    accuracy = accuracy_score(y_val, predictions) print('Val Accuracy = %.2f' % accuracy)

    confusion_mtx = confusion_matrix(y_val, predictions) cm = plot_confusion_matrix(confusion_mtx, classes = list(labels.items()), normalize=False)

    ValueError: Error when checking input: expected vgg16_input to have shape (244, 244, 3) but got array with shape (224, 224, 3)

    Could you help me how I should tackle it? thank u very much.

    opened by Aisha5 0
  • NameError: name 'X_val_prep' is not defined

    NameError: name 'X_val_prep' is not defined

    Hello I have written the following code:

    validate on val set predictions = model.predict(X_val_prep) predictions = [1 if x>0.5 else 0 for x in predictions]

    accuracy = accuracy_score(y_val, predictions) print('Val Accuracy = %.2f' % accuracy)

    confusion_mtx = confusion_matrix(y_val, predictions) cm = plot_confusion_matrix(confusion_mtx, classes = list(labels.items()), normalize=False)

    NameError: name 'X_val_prep' is not defined

    Could you help me how I should tackle it? thank u very much.

    opened by Aisha5 0
  • Loading Keras Model for Multiprocess

    Loading Keras Model for Multiprocess

    Hi, I want to load a keras model in parent process and access by child process but i got many issue.what is correct way to do this.is it possible or not?

    opened by nitishcs007 0
  • keras applications

    keras applications

    Sorry to trouble you, I have a problem about training the keras model.Recently,I used the existing models from keras applications like VGG16,VGG19. The applications provide the existing models which are converted from caffe model. I reproduced the result for inference. But when I want to use the VGG16 model with weights retrain imagenet data,the acc was rised from 0,not a higher acc. First,I think the reason is that tfrecords convert the raw image to (-1.1) but caffe used the raw image which substract mean and convert RGB. Soon, I convert the data in tfrecords look like the data in caffe, but the acc is low too... Second I replace the categorical_crossentropy with sparse_categorical_crossentropy and cancell the one-hot coding. But it doen't work. I'm sorry for my English is elementary level.

    opened by chenglong19029001 0
  • No normalization in prepocess_input function

    No normalization in prepocess_input function

    In the file imagenet_utils.py, the prepocess_input function doesn't contain a normalization procedure, so if I am about to use pretrained VGG19, is it necessary to add this normalization procedure. What's more, why should RGB be changed to BGR. In other websites, the mean value of an image is [123.68, 116.779, 103.939] for RGB, but in this file, it is reversed. which mean value is suitable for the VGG19 in the data format RGB? Do I need to change the image format from RGB to BGR if I want to transfer VGG19 to other tasks? `def preprocess_input(x, dim_ordering='default'): if dim_ordering == 'default': dim_ordering = K.image_dim_ordering() assert dim_ordering in {'tf', 'th'}

    if dim_ordering == 'th':
        x[:, 0, :, :] -= 103.939
        x[:, 1, :, :] -= 116.779
        x[:, 2, :, :] -= 123.68
        # 'RGB'->'BGR'
        x = x[:, ::-1, :, :]
    else:
        x[:, :, :, 0] -= 103.939
        x[:, :, :, 1] -= 116.779
        x[:, :, :, 2] -= 123.68
        # 'RGB'->'BGR'
        x = x[:, :, :, ::-1]
    return x`
    
    opened by Schizophreni 1
Releases(v0.8)
Owner
François Chollet
François Chollet
AutoPentest-DRL: Automated Penetration Testing Using Deep Reinforcement Learning

AutoPentest-DRL: Automated Penetration Testing Using Deep Reinforcement Learning AutoPentest-DRL is an automated penetration testing framework based o

Cyber Range Organization and Design Chair 217 Jan 01, 2023
Facial Image Inpainting with Semantic Control

Facial Image Inpainting with Semantic Control In this repo, we provide a model for the controllable facial image inpainting task. This model enables u

Ren Yurui 8 Nov 22, 2021
Repository accompanying the "Sign Pose-based Transformer for Word-level Sign Language Recognition" paper

by Matyáš Boháček and Marek Hrúz, University of West Bohemia Should you have any questions or inquiries, feel free to contact us here. Repository acco

Matyáš Boháček 30 Dec 30, 2022
StyleTransfer - Open source style transfer project, based on VGG19

StyleTransfer - Open source style transfer project, based on VGG19

Patrick martins de lima 9 Dec 13, 2021
Code for paper "A Critical Assessment of State-of-the-Art in Entity Alignment" (https://arxiv.org/abs/2010.16314)

A Critical Assessment of State-of-the-Art in Entity Alignment This repository contains the source code for the paper A Critical Assessment of State-of

Max Berrendorf 16 Oct 14, 2022
'Solving the sampling problem of the Sycamore quantum supremacy circuits

solve_sycamore This repo contains data, contraction code, and contraction order for the paper ''Solving the sampling problem of the Sycamore quantum s

Feng Pan 29 Nov 28, 2022
This is a re-implementation of TransGAN: Two Pure Transformers Can Make One Strong GAN (CVPR 2021) in PyTorch.

TransGAN: Two Transformers Can Make One Strong GAN [YouTube Video] Paper Authors: Yifan Jiang, Shiyu Chang, Zhangyang Wang CVPR 2021 This is re-implem

Ahmet Sarigun 79 Jan 05, 2023
Imaging, analysis, and simulation software for radio interferometry

ehtim (eht-imaging) Python modules for simulating and manipulating VLBI data and producing images with regularized maximum likelihood methods. This ve

Andrew Chael 5.2k Dec 28, 2022
A scikit-learn compatible neural network library that wraps PyTorch

A scikit-learn compatible neural network library that wraps PyTorch. Resources Documentation Source Code Examples To see more elaborate examples, look

4.9k Dec 31, 2022
[ICLR 2021] "CPT: Efficient Deep Neural Network Training via Cyclic Precision" by Yonggan Fu, Han Guo, Meng Li, Xin Yang, Yining Ding, Vikas Chandra, Yingyan Lin

CPT: Efficient Deep Neural Network Training via Cyclic Precision Yonggan Fu, Han Guo, Meng Li, Xin Yang, Yining Ding, Vikas Chandra, Yingyan Lin Accep

26 Oct 25, 2022
Convolutional Neural Network for 3D meshes in PyTorch

MeshCNN in PyTorch SIGGRAPH 2019 [Paper] [Project Page] MeshCNN is a general-purpose deep neural network for 3D triangular meshes, which can be used f

Rana Hanocka 1.4k Jan 04, 2023
🛠 All-in-one web-based IDE specialized for machine learning and data science.

All-in-one web-based development environment for machine learning Getting Started • Features & Screenshots • Support • Report a Bug • FAQ • Known Issu

Machine Learning Tooling 2.9k Jan 09, 2023
Permute Me Softly: Learning Soft Permutations for Graph Representations

Permute Me Softly: Learning Soft Permutations for Graph Representations

Giannis Nikolentzos 7 Jul 10, 2022
Kohei's 5th place solution for xview3 challenge

xview3-kohei-solution Usage This repository assumes that the given data set is stored in the following locations: $ ls data/input/xview3/*.csv data/in

Kohei Ozaki 2 Jan 17, 2022
Reference models and tools for Cloud TPUs.

Cloud TPUs This repository is a collection of reference models and tools used with Cloud TPUs. The fastest way to get started training a model on a Cl

5k Jan 05, 2023
The first machine learning framework that encourages learning ML concepts instead of memorizing class functions.

SeaLion is designed to teach today's aspiring ml-engineers the popular machine learning concepts of today in a way that gives both intuition and ways of application. We do this through concise algori

Anish 324 Dec 27, 2022
A real world application of a Recurrent Neural Network on a binary classification of time series data

What is this This is a real world application of a Recurrent Neural Network on a binary classification of time series data. This project includes data

Josep Maria Salvia Hornos 2 Jan 30, 2022
PCAM: Product of Cross-Attention Matrices for Rigid Registration of Point Clouds

PCAM: Product of Cross-Attention Matrices for Rigid Registration of Point Clouds PCAM: Product of Cross-Attention Matrices for Rigid Registration of P

valeo.ai 24 May 31, 2022
A list of all named GANs!

The GAN Zoo Every week, new GAN papers are coming out and it's hard to keep track of them all, not to mention the incredibly creative ways in which re

Avinash Hindupur 12.9k Jan 08, 2023
Prometheus Exporter for data scraped from datenplattform.darmstadt.de

darmstadt-opendata-exporter Scrapes data from https://datenplattform.darmstadt.de and presents it in the Prometheus Exposition format. Pull requests w

Martin Weinelt 2 Apr 12, 2022