On Nonlinear Latent Transformations for GAN-based Image Editing - PyTorch implementation

Overview

On Nonlinear Latent Transformations for GAN-based Image Editing - PyTorch implementation

On Nonlinear Latent Transformations for GAN-based Image Editing Valentin Khrulkov, Leyla Mirvakhabova, Ivan Oseledets, Artem Babenko

Overview

We replace linear shifts commonly used for image editing with a flow of a trainable Neural ODE in the latent space.

w' = NN(w; \theta)

The RHS of this Neural ODE is trained end-to-end using pre-trained attribute regressors by enforcing

  • change of the desired attribute;
  • invariance of remaining attributes.

Installation and usage

Data

Data required to use the code is available at this dropbox link (2.5Gb).

Path Description
data data hosted on Dropbox
  ├  models pretrained GAN models and attribute regressors
  ├  log pretrained nonlinear edits (Neural ODEs of depth 1) for a variety of attributes on CUB, FFHQ, Places2
  ├  data_to_rectify 100,000 precomputed pairs (w, R[G[w]]); i.e., style vectors and corresponding semantic attributes
  ├  configs parameters of StyleGAN 2 generators for each dataset (n_mlp, channel_width, etc)
    └  inverses precomputed inverses (elements of W-plus) for sample FFHQ images

To download and unpack the data run get_data.sh.

Training

We used torch 1.7 for training; however, the code should work for lower versions as well. An example training script to rectify all the attributes:

CUDA_VISIBLE_DEVICES=0 python train_ode.py --dataset ffhq \
--nb-iter 5000 \
--alpha 8 \
--depth 1

For selected attributes:

CUDA_VISIBLE_DEVICES=0 python train_ode.py --dataset ffhq \
--nb-iter 5000 \
--alpha 8 \
--dir 4 8 15 16 23 32 \
--depth 1

Custom dataset

For training on a custom dataset, you have to provide

  • Generator and attribute regressor weights
  • a dictionary {dataset}_all.pt (stored in data_to_rectify). It has the form {"ws": ws, "labels" : labels} with ws being a torch.Tensor of size N x 512 and labels is a torch.Tensor of size N x D, with D being the number of semantic factors. labels should be constructed by evaluating the corresponding attribute regressor on synthetic images generator(ws[i]). It is used to sample batches for training.

Visualization

Please see explore.ipynb for example visualizations. lib.utils.py contains a utility wrapper useful for building and loading the Neural ODE models (FlowFactory).

Restoring from checkpoint

= 1 corresponds to an MLP with depth layers odeblock.load_state_dict(...) # some style vector (generator.style(z)) w0 = ... # You can directly call odeint with torch.no_grad(): odeint(odeblock.odefunc, w0, torch.FloatTensor([0, 1]).to(device)) # Or utilize the wrapper flow = LatentFlow(odefunc=odeblock.odefunc, device=device, name="Bald") flow.flow(w=w0, t=1) # To flow real images: w = torch.load("inverses/actors.pt").to(device) flow.flow(w, t=6, truncate_real=6) # truncate_real specifies which portion of a W-plus vector to modify # (e.g., first 6 our of 14 vectors) ">
import torch
from lib.utils import FlowFactory, LatentFlow
from torchdiffeq import odeint_adjoint as odeint
device = torch.device("cuda")
flow_factory = FlowFactory(dataset="ffhq", device=device)
odeblock = flow_factory._build_odeblock(depth=1)
# depth = -1 corresponds to a constant right hand side (w' = c)
# depth >= 1 corresponds to an MLP with depth layers
odeblock.load_state_dict(...)

# some style vector (generator.style(z))
w0 = ...

# You can directly call odeint
with torch.no_grad():
    odeint(odeblock.odefunc, w0, torch.FloatTensor([0, 1]).to(device))

# Or utilize the wrapper 
flow = LatentFlow(odefunc=odeblock.odefunc, device=device, name="Bald")
flow.flow(w=w0, t=1)

# To flow real images:
w = torch.load("inverses/actors.pt").to(device)
flow.flow(w, t=6, truncate_real=6)
# truncate_real specifies which portion of a W-plus vector to modify
# (e.g., first 6 our of 14 vectors)

A sample script to generate a movie is

CUDA_VISIBLE_DEVICES=0 python make_movie.py --attribute Bald --dataset ffhq

Examples

FFHQ

Bald Goatee Wavy_Hair Arched_Eyebrows
Bangs Young Blond_Hair Chubby

Places2

lush rugged fog

Citation

Coming soon.

Credits

Owner
Valentin Khrulkov
PhD student
Valentin Khrulkov
Charsiu: A transformer-based phonetic aligner

Charsiu: A transformer-based phonetic aligner [arXiv] Note. This is a preview version. The aligner is under active development. New functions, new lan

jzhu 166 Dec 09, 2022
Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression.

Spatio-Temporal Entropy Model A Pytorch Reproduction of Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression. More details can

16 Nov 28, 2022
Official implementation of TMANet.

Temporal Memory Attention for Video Semantic Segmentation, arxiv Introduction We propose a Temporal Memory Attention Network (TMANet) to adaptively in

wanghao 94 Dec 02, 2022
[CVPR 2020] Local Class-Specific and Global Image-Level Generative Adversarial Networks for Semantic-Guided Scene Generation

Contents Local and Global GAN Cross-View Image Translation Semantic Image Synthesis Acknowledgments Related Projects Citation Contributions Collaborat

Hao Tang 131 Dec 07, 2022
The code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers".

Energy-based Conditional Generative Adversarial Network (ECGAN) This is the code for the NeurIPS 2021 paper "A Unified View of cGANs with and without

sianchen 22 May 28, 2022
Exploring Relational Context for Multi-Task Dense Prediction [ICCV 2021]

Adaptive Task-Relational Context (ATRC) This repository provides source code for the ICCV 2021 paper Exploring Relational Context for Multi-Task Dense

David Brüggemann 35 Dec 05, 2022
Do you like Quick, Draw? Well what if you could train/predict doodles drawn inside Streamlit? Also draws lines, circles and boxes over background images for annotation.

Streamlit - Drawable Canvas Streamlit component which provides a sketching canvas using Fabric.js. Features Draw freely, lines, circles, boxes and pol

Fanilo Andrianasolo 325 Dec 28, 2022
PyTorch implementation of neural style randomization for data augmentation

README Augment training images for deep neural networks by randomizing their visual style, as described in our paper: https://arxiv.org/abs/1809.05375

84 Nov 23, 2022
banditml is a lightweight contextual bandit & reinforcement learning library designed to be used in production Python services.

banditml is a lightweight contextual bandit & reinforcement learning library designed to be used in production Python services. This library is developed by Bandit ML and ex-authors of Facebook's app

Bandit ML 51 Dec 22, 2022
Official Code for VideoLT: Large-scale Long-tailed Video Recognition (ICCV 2021)

Pytorch Code for VideoLT [Website][Paper] Updates [10/29/2021] Features uploaded to Google Drive, for access please send us an e-mail: zhangxing18 at

Skye 26 Sep 18, 2022
DeepFashion2 is a comprehensive fashion dataset.

DeepFashion2 Dataset DeepFashion2 is a comprehensive fashion dataset. It contains 491K diverse images of 13 popular clothing categories from both comm

switchnorm 1.8k Jan 07, 2023
CAPITAL: Optimal Subgroup Identification via Constrained Policy Tree Search

CAPITAL: Optimal Subgroup Identification via Constrained Policy Tree Search This repository is the official implementation of CAPITAL: Optimal Subgrou

Hengrui Cai 0 Oct 19, 2021
Learning with Subset Stacking

Learning with Subset Stacking (LESS) LESS is a new supervised learning algorithm that is based on training many local estimators on subsets of a given

S. Ilker Birbil 19 Oct 04, 2022
DiAne is a smart fuzzer for IoT devices

Diane Diane is a fuzzer for IoT devices. Diane works by identifying fuzzing triggers in the IoT companion apps to produce valid yet under-constrained

seclab 28 Jan 04, 2023
Controlling Hill Climb Racing with Hand Tacking

Controlling Hill Climb Racing with Hand Tacking Opened Palm for Gas Closed Palm for Brake

Rohit Ingole 3 Jan 18, 2022
Morphable Detector for Object Detection on Demand

Morphable Detector for Object Detection on Demand (ICCV 2021) PyTorch implementation of the paper Morphable Detector for Object Detection on Demand. I

9 Feb 23, 2022
Aesara is a Python library that allows one to define, optimize, and efficiently evaluate mathematical expressions involving multi-dimensional arrays.

Aesara is a Python library that allows one to define, optimize, and efficiently evaluate mathematical expressions involving multi-dimensional arrays.

Aesara 898 Jan 07, 2023
A multi-functional library for full-stack Deep Learning. Simplifies Model Building, API development, and Model Deployment.

chitra What is chitra? chitra (चित्र) is a multi-functional library for full-stack Deep Learning. It simplifies Model Building, API development, and M

Aniket Maurya 210 Dec 21, 2022
[CVPR2021] DoDNet: Learning to segment multi-organ and tumors from multiple partially labeled datasets

DoDNet This repo holds the pytorch implementation of DoDNet: DoDNet: Learning to segment multi-organ and tumors from multiple partially labeled datase

116 Dec 12, 2022
TorchGeo is a PyTorch domain library, similar to torchvision, that provides datasets, transforms, samplers, and pre-trained models specific to geospatial data.

TorchGeo is a PyTorch domain library, similar to torchvision, that provides datasets, transforms, samplers, and pre-trained models specific to geospatial data.

Microsoft 1.3k Dec 30, 2022