Romanian Automatic Speech Recognition from the ROBIN project

Overview

RobinASR

This repository contains Robin's Automatic Speech Recognition (RobinASR) for the Romanian language based on the DeepSpeech2 architecture, together with a KenLM language model to imporve the transcriptions.

The pretrained text-to-speech model can be downloaded from here and the pretrained KenLM can be downloaded from here.

Also, make sure to visit:

Installation

Docker

  1. Download the pretrained text-to-speech model and the pretrained KenLM at the above links, and copy them in a models directory inside this repository.

  2. Build the docker image using the Dockerfile. Make sure that deepspeech_pytorch/configs/inference_config.py has the desired configuration.

docker build --tag RobinASR .
  1. Run the docker image.
docker run --gpus all -p 8888:8888 --net=host --ipc=host RobinASR

From Source

  1. You must have Python 3.6+ and PyTorch 1.5.1+ installed in your system. Also. Cuda 10.1+ is required if you want to use the (recommended) GPU version.

  2. Clone the repository and install its dependencies:

git clone https://github.com/racai-ai/RobinASR.git
cd RobinASR
pip3 install -r requirements.txt
pip3 install -e .
  1. Install Nvidia Apex:
git clone --recursive https://github.com/NVIDIA/apex.git
cd apex && pip install .
  1. If you want to use Beam Search and the KenLM language model, you must install CTCDecode:
git clone --recursive https://github.com/parlance/ctcdecode.git
cd ctcdecode && pip install .

Inference Server

Firstly, take a look at the configuration file in deepspeech_pytorch/configs/inference_config.py and make sure that the configuration meets your requirements. Then, run the following command:

python3 server.py

Train a New Model

You must create 3 csv manifest files (train, valid and test) that contain on each line the the path to a wav file and the path to its corresponding transcription, separated by commas:

path_to_wav1,path_to_txt1
path_to_wav2,path_to_txt2
path_to_wav3,path_to_txt3
...

Then you must modify correspondingly with your configuration the file located at deepspeech_pytorch/configs/train_config.py and start training with:

python train.py

Acknowledgments

We would like to thank Sean Narnen for making his DeepSpeech2 implementation publicly-available. We used a lot of his code in our implementation.

Cite

If you are using this repository, please cite the following paper as a thank you to the authors:

Avram, A.M., Păiș, V. and Tufis, D., 2020, October. Towards a Romanian end-to-end automatic speech recognition based on Deepspeech2. In Proc. Rom. Acad. Ser. A (Vol. 21, pp. 395-402).

or in BibTeX format:

@inproceedings{avram2020towards,
  title={Towards a Romanian end-to-end automatic speech recognition based on Deepspeech2},
  author={Avram, Andrei-Marius and Păiș, Vasile and Tufiș, Dan},
  booktitle={Proceedings of the Romanian Academy, Series A},
  pages={395--402},
  year={2020}
}
Owner
RACAI
Research Institute for Artificial Intelligence "Mihai Drăgănescu", Romanian Academy
RACAI
MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

MoCoPnet: Exploring Local Motion and Contrast Priors for Infrared Small Target Super-Resolution Pytorch implementation of local motion and contrast pr

Xinyi Ying 28 Dec 15, 2022
Turning SymPy expressions into PyTorch modules.

sympytorch A micro-library as a convenience for turning SymPy expressions into PyTorch Modules. All SymPy floats become trainable parameters. All SymP

Patrick Kidger 89 Dec 13, 2022
Fashion Recommender System With Python

Fashion-Recommender-System Thr growing e-commerce industry presents us with a la

Omkar Gawade 2 Feb 02, 2022
Efficient Two-Step Networks for Temporal Action Segmentation (Neurocomputing 2021)

Efficient Two-Step Networks for Temporal Action Segmentation This repository provides a PyTorch implementation of the paper Efficient Two-Step Network

8 Apr 16, 2022
A deep learning model for style-specific music generation.

DeepJ: A model for style-specific music generation https://arxiv.org/abs/1801.00887 Abstract Recent advances in deep neural networks have enabled algo

Henry Mao 704 Nov 23, 2022
Fake-user-agent-traffic-geneator - Python CLI Tool to generate fake traffic against URLs with configurable user-agents

Fake traffic generator for Gartner Demo Generate fake traffic to URLs with custo

New Relic Experimental 3 Oct 31, 2022
TensorFlow implementation of Style Transfer Generative Adversarial Networks: Learning to Play Chess Differently.

Adversarial Chess TensorFlow implementation of Style Transfer Generative Adversarial Networks: Learning to Play Chess Differently. Requirements To run

Muthu Chidambaram 30 Sep 07, 2021
Vector Quantized Diffusion Model for Text-to-Image Synthesis

Vector Quantized Diffusion Model for Text-to-Image Synthesis Due to company policy, I have to set microsoft/VQ-Diffusion to private for now, so I prov

Shuyang Gu 294 Jan 05, 2023
This is an official implementation for "PlaneRecNet".

PlaneRecNet This is an official implementation for PlaneRecNet: A multi-task convolutional neural network provides instance segmentation for piece-wis

yaxu 50 Nov 17, 2022
Implementation of the federated dual coordinate descent (FedDCD) method.

FedDCD.jl Implementation of the federated dual coordinate descent (FedDCD) method. Installation To install, just call Pkg.add("https://github.com/Zhen

Zhenan Fan 6 Sep 21, 2022
[CVPR2021 Oral] UP-DETR: Unsupervised Pre-training for Object Detection with Transformers

UP-DETR: Unsupervised Pre-training for Object Detection with Transformers This is the official PyTorch implementation and models for UP-DETR paper: @a

dddzg 430 Dec 23, 2022
Official implementation of "Learning Proposals for Practical Energy-Based Regression", 2021.

ebms_proposals Official implementation (PyTorch) of the paper: Learning Proposals for Practical Energy-Based Regression, 2021 [arXiv] [project]. Fredr

Fredrik Gustafsson 10 Oct 22, 2022
Python version of the amazing Reaction Mechanism Generator (RMG).

Reaction Mechanism Generator (RMG) Description This repository contains the Python version of Reaction Mechanism Generator (RMG), a tool for automatic

Reaction Mechanism Generator 284 Dec 27, 2022
PyTorch code for the ICCV'21 paper: "Always Be Dreaming: A New Approach for Class-Incremental Learning"

Always Be Dreaming: A New Approach for Data-Free Class-Incremental Learning PyTorch code for the ICCV 2021 paper: Always Be Dreaming: A New Approach f

49 Dec 21, 2022
Spatial Contrastive Learning for Few-Shot Classification (SCL)

This repo contains the official implementation of Spatial Contrastive Learning for Few-Shot Classification (SCL), which presents of a novel contrastive learning method applied to few-shot image class

Yassine 34 Dec 25, 2022
DyNet: The Dynamic Neural Network Toolkit

The Dynamic Neural Network Toolkit General Installation C++ Python Getting Started Citing Releases and Contributing General DyNet is a neural network

Chris Dyer's lab @ LTI/CMU 3.3k Jan 06, 2023
[CVPR 2021] NormalFusion: Real-Time Acquisition of Surface Normals for High-Resolution RGB-D Scanning

NormalFusion: Real-Time Acquisition of Surface Normals for High-Resolution RGB-D Scanning Project Page | Paper | Supplemental material #1 | Supplement

KAIST VCLAB 49 Nov 24, 2022
AdaFocus (ICCV 2021) Adaptive Focus for Efficient Video Recognition

AdaFocus (ICCV 2021) This repo contains the official code and pre-trained models for AdaFocus. Adaptive Focus for Efficient Video Recognition Referenc

Rainforest Wang 115 Dec 21, 2022
A high-performance Python-based I/O system for large (and small) deep learning problems, with strong support for PyTorch.

WebDataset WebDataset is a PyTorch Dataset (IterableDataset) implementation providing efficient access to datasets stored in POSIX tar archives and us

1.1k Jan 08, 2023
Lightweight Face Image Quality Assessment

LightQNet This is a demo code of training and testing [LightQNet] using Tensorflow. Uncertainty Losses: IDQ loss PCNet loss Uncertainty Networks: Mobi

Kaen 5 Nov 18, 2022