Romanian Automatic Speech Recognition from the ROBIN project

Overview

RobinASR

This repository contains Robin's Automatic Speech Recognition (RobinASR) for the Romanian language based on the DeepSpeech2 architecture, together with a KenLM language model to imporve the transcriptions.

The pretrained text-to-speech model can be downloaded from here and the pretrained KenLM can be downloaded from here.

Also, make sure to visit:

Installation

Docker

  1. Download the pretrained text-to-speech model and the pretrained KenLM at the above links, and copy them in a models directory inside this repository.

  2. Build the docker image using the Dockerfile. Make sure that deepspeech_pytorch/configs/inference_config.py has the desired configuration.

docker build --tag RobinASR .
  1. Run the docker image.
docker run --gpus all -p 8888:8888 --net=host --ipc=host RobinASR

From Source

  1. You must have Python 3.6+ and PyTorch 1.5.1+ installed in your system. Also. Cuda 10.1+ is required if you want to use the (recommended) GPU version.

  2. Clone the repository and install its dependencies:

git clone https://github.com/racai-ai/RobinASR.git
cd RobinASR
pip3 install -r requirements.txt
pip3 install -e .
  1. Install Nvidia Apex:
git clone --recursive https://github.com/NVIDIA/apex.git
cd apex && pip install .
  1. If you want to use Beam Search and the KenLM language model, you must install CTCDecode:
git clone --recursive https://github.com/parlance/ctcdecode.git
cd ctcdecode && pip install .

Inference Server

Firstly, take a look at the configuration file in deepspeech_pytorch/configs/inference_config.py and make sure that the configuration meets your requirements. Then, run the following command:

python3 server.py

Train a New Model

You must create 3 csv manifest files (train, valid and test) that contain on each line the the path to a wav file and the path to its corresponding transcription, separated by commas:

path_to_wav1,path_to_txt1
path_to_wav2,path_to_txt2
path_to_wav3,path_to_txt3
...

Then you must modify correspondingly with your configuration the file located at deepspeech_pytorch/configs/train_config.py and start training with:

python train.py

Acknowledgments

We would like to thank Sean Narnen for making his DeepSpeech2 implementation publicly-available. We used a lot of his code in our implementation.

Cite

If you are using this repository, please cite the following paper as a thank you to the authors:

Avram, A.M., Păiș, V. and Tufis, D., 2020, October. Towards a Romanian end-to-end automatic speech recognition based on Deepspeech2. In Proc. Rom. Acad. Ser. A (Vol. 21, pp. 395-402).

or in BibTeX format:

@inproceedings{avram2020towards,
  title={Towards a Romanian end-to-end automatic speech recognition based on Deepspeech2},
  author={Avram, Andrei-Marius and Păiș, Vasile and Tufiș, Dan},
  booktitle={Proceedings of the Romanian Academy, Series A},
  pages={395--402},
  year={2020}
}
Owner
RACAI
Research Institute for Artificial Intelligence "Mihai Drăgănescu", Romanian Academy
RACAI
PIKA: a lightweight speech processing toolkit based on Pytorch and (Py)Kaldi

PIKA: a lightweight speech processing toolkit based on Pytorch and (Py)Kaldi PIKA is a lightweight speech processing toolkit based on Pytorch and (Py)

336 Nov 25, 2022
Physics-Aware Training (PAT) is a method to train real physical systems with backpropagation.

Physics-Aware Training (PAT) is a method to train real physical systems with backpropagation. It was introduced in Wright, Logan G. & Onodera, Tatsuhiro et al. (2021)1 to train Physical Neural Networ

McMahon Lab 230 Jan 05, 2023
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Apache MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to m

The Apache Software Foundation 20.2k Jan 05, 2023
Repository for open research on optimizers.

Open Optimizers Repository for open research on optimizers. This is a test in sharing research/exploration as it happens. If you use anything from thi

Ariel Ekgren 6 Jun 24, 2022
This app is a simple example of using Strealit to create a financial data web app.

Streamlit Demo: Finance Chart This app is a simple example of using Streamlit to create a financial data web app. This demo use streamlit, pandas and

91 Jan 02, 2023
The Official PyTorch Implementation of DiscoBox.

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision Paper | Project page | Demo (Youtube) | Demo (Bilib

NVIDIA Research Projects 89 Jan 09, 2023
This is a work in progress reimplementation of Instant Neural Graphics Primitives

Neural Hash Encoding This is a work in progress reimplementation of Instant Neural Graphics Primitives Currently this can train an implicit representa

Penn 79 Sep 01, 2022
Code for the paper "M2m: Imbalanced Classification via Major-to-minor Translation" (CVPR 2020)

M2m: Imbalanced Classification via Major-to-minor Translation This repository contains code for the paper "M2m: Imbalanced Classification via Major-to

79 Oct 13, 2022
Implementation of "Glancing Transformer for Non-Autoregressive Neural Machine Translation"

GLAT Implementation for the ACL2021 paper "Glancing Transformer for Non-Autoregressive Neural Machine Translation" Requirements Python = 3.7 Pytorch

117 Jan 09, 2023
Code related to the manuscript "Averting A Crisis In Simulation-Based Inference"

Abstract We present extensive empirical evidence showing that current Bayesian simulation-based inference algorithms are inadequate for the falsificat

Montefiore Artificial Intelligence Research 3 Nov 14, 2022
Deep Video Matting via Spatio-Temporal Alignment and Aggregation [CVPR2021]

Deep Video Matting via Spatio-Temporal Alignment and Aggregation [CVPR2021] Paper: https://arxiv.org/abs/2104.11208 Introduction Despite the significa

76 Dec 07, 2022
Code for Multimodal Neural SLAM for Interactive Instruction Following

Code for Multimodal Neural SLAM for Interactive Instruction Following Code structure The code is adapted from E.T. and most training as well as data p

7 Dec 07, 2022
[ACL-IJCNLP 2021] Improving Named Entity Recognition by External Context Retrieving and Cooperative Learning

CLNER The code is for our ACL-IJCNLP 2021 paper: Improving Named Entity Recognition by External Context Retrieving and Cooperative Learning CLNER is a

71 Dec 08, 2022
Repository sharing code and the model for the paper "Rescoring Sequence-to-Sequence Models for Text Line Recognition with CTC-Prefixes"

Rescoring Sequence-to-Sequence Models for Text Line Recognition with CTC-Prefixes Setup virtualenv -p python3 venv source venv/bin/activate pip instal

Planet AI GmbH 9 May 20, 2022
Collection of tasks for fast prototyping, baselining, finetuning and solving problems with deep learning.

Collection of tasks for fast prototyping, baselining, finetuning and solving problems with deep learning Installation

Pytorch Lightning 1.6k Jan 08, 2023
A PyTorch Implementation of the Luna: Linear Unified Nested Attention

Unofficial PyTorch implementation of Luna: Linear Unified Nested Attention The quadratic computational and memory complexities of the Transformer’s at

Soohwan Kim 32 Nov 07, 2022
VISNOTATE: An Opensource tool for Gaze-based Annotation of WSI Data

VISNOTATE: An Opensource tool for Gaze-based Annotation of WSI Data Introduction Requirements Installation and Setup Supported Hardware and Software R

SigmaLab 1 Jun 14, 2022
Self-Supervised Monocular DepthEstimation with Internal Feature Fusion(arXiv), BMVC2021

DIFFNet This repo is for Self-Supervised Monocular Depth Estimation with Internal Feature Fusion(arXiv), BMVC2021 A new backbone for self-supervised d

Hang 94 Dec 25, 2022
SW components and demos for visual kinship recognition. An emphasis is put on the FIW dataset-- data loaders, benchmarks, results in summary.

FIW Data Development Kit Table of Contents Introduction Families In the Wild Database Publications Organization To Do License Getting Involved Introdu

Joseph P. Robinson 12 Jun 04, 2022
This is the repository of shape matching algorithm Iterative Rotations and Assignments (IRA)

Description This is the repository of shape matching algorithm Iterative Rotations and Assignments (IRA), described in the publication [1]. Directory

MAMMASMIAS Consortium 6 Nov 14, 2022