Romanian Automatic Speech Recognition from the ROBIN project

Overview

RobinASR

This repository contains Robin's Automatic Speech Recognition (RobinASR) for the Romanian language based on the DeepSpeech2 architecture, together with a KenLM language model to imporve the transcriptions.

The pretrained text-to-speech model can be downloaded from here and the pretrained KenLM can be downloaded from here.

Also, make sure to visit:

Installation

Docker

  1. Download the pretrained text-to-speech model and the pretrained KenLM at the above links, and copy them in a models directory inside this repository.

  2. Build the docker image using the Dockerfile. Make sure that deepspeech_pytorch/configs/inference_config.py has the desired configuration.

docker build --tag RobinASR .
  1. Run the docker image.
docker run --gpus all -p 8888:8888 --net=host --ipc=host RobinASR

From Source

  1. You must have Python 3.6+ and PyTorch 1.5.1+ installed in your system. Also. Cuda 10.1+ is required if you want to use the (recommended) GPU version.

  2. Clone the repository and install its dependencies:

git clone https://github.com/racai-ai/RobinASR.git
cd RobinASR
pip3 install -r requirements.txt
pip3 install -e .
  1. Install Nvidia Apex:
git clone --recursive https://github.com/NVIDIA/apex.git
cd apex && pip install .
  1. If you want to use Beam Search and the KenLM language model, you must install CTCDecode:
git clone --recursive https://github.com/parlance/ctcdecode.git
cd ctcdecode && pip install .

Inference Server

Firstly, take a look at the configuration file in deepspeech_pytorch/configs/inference_config.py and make sure that the configuration meets your requirements. Then, run the following command:

python3 server.py

Train a New Model

You must create 3 csv manifest files (train, valid and test) that contain on each line the the path to a wav file and the path to its corresponding transcription, separated by commas:

path_to_wav1,path_to_txt1
path_to_wav2,path_to_txt2
path_to_wav3,path_to_txt3
...

Then you must modify correspondingly with your configuration the file located at deepspeech_pytorch/configs/train_config.py and start training with:

python train.py

Acknowledgments

We would like to thank Sean Narnen for making his DeepSpeech2 implementation publicly-available. We used a lot of his code in our implementation.

Cite

If you are using this repository, please cite the following paper as a thank you to the authors:

Avram, A.M., Păiș, V. and Tufis, D., 2020, October. Towards a Romanian end-to-end automatic speech recognition based on Deepspeech2. In Proc. Rom. Acad. Ser. A (Vol. 21, pp. 395-402).

or in BibTeX format:

@inproceedings{avram2020towards,
  title={Towards a Romanian end-to-end automatic speech recognition based on Deepspeech2},
  author={Avram, Andrei-Marius and Păiș, Vasile and Tufiș, Dan},
  booktitle={Proceedings of the Romanian Academy, Series A},
  pages={395--402},
  year={2020}
}
Owner
RACAI
Research Institute for Artificial Intelligence "Mihai Drăgănescu", Romanian Academy
RACAI
Unofficial implement with paper SpeakerGAN: Speaker identification with conditional generative adversarial network

Introduction This repository is about paper SpeakerGAN , and is unofficially implemented by Mingming Huang ( 7 Jan 03, 2023

Dynamic Attentive Graph Learning for Image Restoration, ICCV2021 [PyTorch Code]

Dynamic Attentive Graph Learning for Image Restoration This repository is for GATIR introduced in the following paper: Chong Mou, Jian Zhang, Zhuoyuan

Jian Zhang 84 Dec 09, 2022
Codes and pretrained weights for winning submission of 2021 Brain Tumor Segmentation (BraTS) Challenge

Winning submission to the 2021 Brain Tumor Segmentation Challenge This repo contains the codes and pretrained weights for the winning submission to th

94 Dec 28, 2022
Repository for the paper titled: "When is BERT Multilingual? Isolating Crucial Ingredients for Cross-lingual Transfer"

When is BERT Multilingual? Isolating Crucial Ingredients for Cross-lingual Transfer This repository contains code for our paper titled "When is BERT M

Princeton Natural Language Processing 9 Dec 23, 2022
Neural Contours: Learning to Draw Lines from 3D Shapes (CVPR2020)

Neural Contours: Learning to Draw Lines from 3D Shapes This repository contains the PyTorch implementation for CVPR 2020 Paper "Neural Contours: Learn

93 Dec 16, 2022
QI-Q RoboMaster2022 CV Algorithm

QI-Q RoboMaster2022 CV Algorithm

2 Jan 10, 2022
Global-Local Attention for Emotion Recognition

Global-Local Attention for Emotion Recognition Requirements Python 3 Install tensorflow (or tensorflow-gpu) = 2.0.0 Install some other packages pip i

Minh Nhat Le 15 Apr 21, 2022
The official implementation of our CVPR 2021 paper - Hybrid Rotation Averaging: A Fast and Robust Rotation Averaging Approach

Graph Optimizer This repo contains the official implementation of our CVPR 2021 paper - Hybrid Rotation Averaging: A Fast and Robust Rotation Averagin

Chenyu 109 Dec 23, 2022
PyTorch Kafka Dataset: A definition of a dataset to get training data from Kafka.

PyTorch Kafka Dataset: A definition of a dataset to get training data from Kafka.

ERTIS Research Group 7 Aug 01, 2022
Official PyTorch Implementation of Mask-aware IoU and maYOLACT Detector [BMVC2021]

The official implementation of Mask-aware IoU and maYOLACT detector. Our implementation is based on mmdetection. Mask-aware IoU for Anchor Assignment

Kemal Oksuz 46 Sep 29, 2022
CIFS: Improving Adversarial Robustness of CNNs via Channel-wise Importance-based Feature Selection

CIFS This repository provides codes for CIFS (ICML 2021). CIFS: Improving Adversarial Robustness of CNNs via Channel-wise Importance-based Feature Sel

Hanshu YAN 19 Nov 12, 2022
Framework to build and train RL algorithms

RayLink RayLink is a RL framework used to build and train RL algorithms. RayLink was used to build a RL framework, and tested in a large-scale multi-a

Bytedance Inc. 32 Oct 07, 2022
[ICCV2021] Learning to Track Objects from Unlabeled Videos

Unsupervised Single Object Tracking (USOT) 🌿 Learning to Track Objects from Unlabeled Videos Jilai Zheng, Chao Ma, Houwen Peng and Xiaokang Yang 2021

53 Dec 28, 2022
Cancer metastasis detection with neural conditional random field (NCRF)

NCRF Prerequisites Data Whole slide images Annotations Patch images Model Training Testing Tissue mask Probability map Tumor localization FROC evaluat

Baidu Research 731 Jan 01, 2023
Instant neural graphics primitives: lightning fast NeRF and more

Instant Neural Graphics Primitives Ever wanted to train a NeRF model of a fox in under 5 seconds? Or fly around a scene captured from photos of a fact

NVIDIA Research Projects 10.6k Jan 01, 2023
This repository is for our EMNLP 2021 paper "Automated Generation of Accurate & Fluent Medical X-ray Reports"

Introduction: X-Ray Report Generation This repository is for our EMNLP 2021 paper "Automated Generation of Accurate & Fluent Medical X-ray Reports". O

no name 36 Dec 16, 2022
PyTorch implementations of neural network models for keyword spotting

Honk: CNNs for Keyword Spotting Honk is a PyTorch reimplementation of Google's TensorFlow convolutional neural networks for keyword spotting, which ac

Castorini 475 Dec 15, 2022
GLNet for Memory-Efficient Segmentation of Ultra-High Resolution Images

GLNet for Memory-Efficient Segmentation of Ultra-High Resolution Images Collaborative Global-Local Networks for Memory-Efficient Segmentation of Ultra-

VITA 298 Dec 12, 2022
A series of Python scripts to access measurements from Fluke 28X meters. Fluke IR Remote Interface required.

Fluke289_data_access A series of Python scripts to access measurements from Fluke 28X meters. Fluke IR Remote Interface required. Created from informa

3 Dec 08, 2022
Implementation of "Generalizable Neural Performer: Learning Robust Radiance Fields for Human Novel View Synthesis"

Generalizable Neural Performer: Learning Robust Radiance Fields for Human Novel View Synthesis Abstract: This work targets at using a general deep lea

163 Dec 14, 2022