Detect roadway lanes using Python OpenCV for project during the 5th semester at DHBW Stuttgart for lecture in digital image processing.

Overview

Find Line Detection (Image Processing)

Identifying lanes of the road is very common task that human driver performs. It's important to keep the vehicle in the constraints of the lane. We implement a lane line detector for curve lines with the following steps:

Line Detection Preview

  1. Calibration of camera (undistort images)
  2. Warp perspective of image with cv.warpPerspective
  3. Use of white and yellow color masks (cv.inRange)
  4. Use of morphological closing
  5. Sliding windows
  6. Curvefitting with calculation of curve radius
  7. Creation of lane area by filling polylines of left and right lanes (cv.fillPoly)
  8. Warp lane area back (cv.warpPerspective)
  9. Overlay lane area on original frame (cv.addWeighted)

About

This project was developed by Nils-Christopher Wiesenauer (7344312) and Namid Marxen (2975680) on behalf of the image processing lecture during the 5th semester at DHBW Stuttgart. The main purpose of this project is to detect roadway lines.

🚗 We created a pipeline for this lane detection problem.

Table of Contents

Installation and Usage

To use this project you need to implement:

Functions for detection

In this section, the necessary functions for lane detection are defined.

Initialize packages and datasets

This codeblock initializes all needed packages and global variables.

# Imports
import cv2 as cv
from matplotlib import pyplot as plt
import numpy as np
import time
import warnings
# Dont show warnings
warnings.filterwarnings("ignore")

# number of windows for sliding windows 
nwindows = 180

# value for last radius
last_r = None

# For radius calculation (pixels to meters)
y_m_per_pix = 30 / 720
x_m_per_pix = 3.7 / 1280

# Source and destination for perspective transformation
src = np.array([[598, 448], [684, 448], [1026, 668], [278, 668]], np.float32)
dst = np.array([[300, 0], [980, 0], [980, 720], [300, 720]], np.float32)

# Kernels for filter operations
kernel_small = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]], 'uint8')
kernel_large = np.array([[0, 1, 1, 1, 0], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [0, 1, 1, 1, 0]], 'uint8')

# ROI (trapezoid)
#ROI = np.array([[(570, 450),(650, 450),(1300, 650),(200, 650)]], dtype= np.int32)

Filters

In this subsection we define all needed color, convolution and morphological filters.

  • Color filter:

    • The function color_space(img) applies a yellow and white mask on a BGR image
  • Convolution filter:

    • The function canny_space(img, lower, upper) returns edges of a gray image by equalizing the image histogramm, applying gaussian blur and using cv.Canny
  • Morphological filter:

    • Dilatation (dilate(img, iterations)): Expands the shapes of the image
    • Erosion (erode(img, iterations)): Reduces the shapes of the image
    • Closing (close(img, iterations)): Removes noises
# Convert image to yellow and white color space
def color_space(img):
    # Convert image to HSV
    img_hsv = cv.cvtColor(img, cv.COLOR_BGR2HSV)
    # Colorspace "yellow" in HSV: (15-40, 80-255, 160-255)
    mask_yellow = cv.inRange(img_hsv, (15, 80, 160), (40, 255, 255))
    # Colorspace "white" in HSV: (0-255, 0-20, 200-255)
    mask_white = cv.inRange(img_hsv, (0, 0, 200), (255, 20, 255))
    # Merge white and yellow masks
    masks = cv.bitwise_or(mask_yellow, mask_white)
    # Return image in gray
    return cv.cvtColor(cv.bitwise_and(img, img, mask=masks), cv.COLOR_BGR2GRAY)

# Apply canny filter to image
def canny_space(img, lower=80, upper=200):
    # Equalize histogramm with gray image
    equalized_gray_image = cv.equalizeHist(img)
    # Blur image three times
    equalized_gray_image = cv.GaussianBlur(equalized_gray_image, (5, 5), 0)
    equalized_gray_image = cv.GaussianBlur(equalized_gray_image, (5, 5), 0)
    equalized_gray_image = cv.GaussianBlur(equalized_gray_image, (5, 5), 0)
    # Return image with canny filter
    return cv.Canny(equalized_gray_image, lower, upper) 

# Dilate image (Expands the shapes of the image)
def dilate(img, iterations):
    return cv.dilate(img, kernel_small, iterations=iterations)

# Erode image (Reduces the shapes of the image)
def erode(img, iterations):
    return cv.erode(img, kernel_small, iterations=iterations)

# Close image (Removes noises)
def close(img, iterations):
    return cv.morphologyEx(img, cv.MORPH_CLOSE, kernel_large, iterations=iterations)

Sliding windows

The sliding window function (sliding_windows(warped_img, margin, minimum)) determines points for curve fitting with the following algorithm and steps:

  1. Determine spikes of histogram to calculate starting points
  2. Go through every window of a number of windows:
    • Calculate the optimal center of the window on the left and right side
    • Add the centers of the windows to an array

This way, a set of points is converted to one point. A window "slides" from the bottom to the top of the image along the curve.

Sliding-window-example

def sliding_windows(warped_img, margin=200, minimum=30):
    # Histogram for image
    hist = np.sum(warped_img[warped_img.shape[0]//2:, :], axis=0)
        
    # Take peaks from left and right side of histogramm for starting points and add half margin
    mid = np.int(hist.shape[0] // 2)
    leftx_start = np.argmax(hist[:mid]) - margin // 2
    rightx_start = np.argmax(hist[mid:]) + mid + margin // 2

    # Window height based on number of windows
    window_height = np.int(warped_img.shape[0] // nwindows)
    
    # Calc points that are not zero in images
    nonzero = warped_img.nonzero()
    nonzeroy = np.array(nonzero[0])
    nonzerox = np.array(nonzero[1])
    
    # Initialize current positions for windows
    leftx_current = leftx_start
    rightx_current = rightx_start

    # Initialize values to be returned -> centers of windows
    lefts_good = np.empty(shape=(1,1), dtype=int)
    rights_good = np.empty(shape=(1,1), dtype=int)

    # Go through every window
    for window in range(nwindows):
        # Identify window boundaries in x and y (and right and left)
        win_y_low = warped_img.shape[0] - (window + 1) * window_height
        win_y_high = warped_img.shape[0] - window*window_height
        
        # Calculate boundaries of the window
        win_xleft_low = leftx_current - margin  
        win_xleft_high = leftx_current + margin  
        win_xright_low =  rightx_current - margin 
        win_xright_high = rightx_current + margin  
        
        # Identify the pixels that are not zero within window
        left_inds = ((nonzeroy >= win_y_low ) & (nonzeroy < win_y_high) & (nonzerox >= win_xleft_low) & (nonzerox < win_xleft_high)).nonzero()[0]
        right_inds = ((nonzeroy >= win_y_low ) & (nonzeroy < win_y_high) & (nonzerox >= win_xright_low) & (nonzerox < win_xright_high)).nonzero()[0]
        
        # If more than minimum pixels are found -> recenter next window
        if len(left_inds) > minimum:
            leftx_current = np.int(np.mean(nonzerox[left_inds]))
        if len(right_inds) > minimum:
            rightx_current = np.int(np.mean(nonzerox[right_inds]))

        # Add centers of windows to array
        lefts_good = np.append(lefts_good, leftx_current)
        rights_good = np.append(rights_good, rightx_current)
    return mid, lefts_good, rights_good

Curve fitting and radius

In this subsection we use curve fitting to calculate the radius of the curve.

Before we can use this formula, we need to do the following steps:

  1. Calculate curve (calc_curve(leftx, rightx, img)): Calculates a function with polyfit with the given input points (from sliding window)

  2. Calculate radius (calc_radius(left_fit, right_fit, leftx, rightx)): Calculates the function with polyfit again, but fittet to meters, not to pixels and calls cal_r(street_area, x_range) for the left and right curve.

  3. Calculate radius degree (cal_r(street_area, x_range)): Selects median x of input x-values (middle of the curve) and calculates radius by the following formula: Formula curve radius calculation

# Calculate curves of lanes with polyfit function
def calc_curve(leftx, rightx, img):
    y = np.linspace(len(img), 0, nwindows+1).astype(int)
    left = np.polyfit(leftx, y, deg=2) 
    right = np.polyfit(rightx , y, deg=2)
    # Calculate radius for curves
    radius = calc_radius(left, right, leftx, rightx)
    return left, right, radius

# Calculate radius for two lines
def calc_radius(left_fit, right_fit, leftx, rightx):
    global last_r
    # Functions for curves by polyfit
    left_fitx = left_fit[0]*leftx**2 + left_fit[1]*leftx + left_fit[2]
    right_fitx = right_fit[0]*rightx**2 + right_fit[1]*rightx + right_fit[2]
    
    # Calculate functions again with meters for values
    left_fit_curve = np.polyfit(leftx*x_m_per_pix, left_fitx*y_m_per_pix, deg=2)
    right_fit_curve = np.polyfit(rightx*x_m_per_pix, right_fitx*y_m_per_pix, deg=2)
    
    # radius of curve
    left = cal_r(left_fit_curve, leftx)
    right = cal_r(right_fit_curve, rightx)

    # Take average from last radius and current radius (if last_r is not None)
    if (last_r != None):
        radius = round(np.mean([left, right, last_r]),0)
    else:
        radius = round(np.mean([left, right]),0)

    # Save current radius for next calculation
    last_r = round(np.mean([left, right]),0)
    return radius

# Calcurate curve radius | R_curve = ((1 + (2*w2*x + w1)^2)^3/2) / | 2*w2 |
def cal_r(street_area, x_range):
    # Take median from x values
    x = np.median(x_range * x_m_per_pix)

    # Calculation
    radius = ((1 + (2 * street_area[0] * x + street_area[1])**2)**(3/2)) / abs(2 * street_area[0])
    return radius

Apply area

Functions to show the results on an image:

  1. Calc lanes (calc_lanes(street_area, midpoint, isleft)):
    • Calculates points for the given function that can be applied onto an image
    • Calculate extrem point for curve
    • Select upper and lower boundaries and use extreme value if neccesary, so that the curve does not go over the extreme point
    • Return the calculated points as xy-tupels
  • Calc area (calc_area(img, left_points, right_points, with_alpha=False)):
    • Returns an image with the area between two lanes colored.
    • Either color the image green (3 channels), or white (1 channel)
    • Sort left and right points by y-values and flip the right points, so that polyfit can interpret it
# Calculate points for lanes
def calc_lanes(street_area, midpoint, isleft):
    # Calculate extreme value for curve
    # DGL: ax^2 + bx + c -> 2ax + b = 0 -> x = (-b/2)/a
    x_extreme = (-street_area[1]) / 2 / street_area[0]

    # Set lower and upper boundaries
    if(isleft):
        lower = 50
        upper = midpoint
    else: 
        lower = midpoint
        upper = 1200
    
    diff_lower = abs(lower - x_extreme) # distance left to extreme point
    diff_upper = abs(upper - x_extreme) # distance right to extreme point
    
    
    # Define x values
    # if left is closer to extreme point -> set extreme point as lower boundary
    if (diff_lower < diff_upper):
        x = np.linspace(x_extreme, upper, 4500).reshape(-1, 1)
    # if right is closer to extreme point -> set extreme point as upper boundary
    else:
        x = np.linspace(lower, x_extreme, 4500).reshape(-1, 1)

    # Get y values from polyfit function
    y = (street_area[0] * (x**2) + street_area[1] * x + street_area[2]).reshape(-1, 1)

    # Merge points -> [[p1], [p2]...]
    xycoor = np.concatenate((x,y), axis=1)
    return xycoor

# Create area between lanes
def calc_area(img, left_points, right_points, with_alpha=False):
    # If with_alpha is True -> Make image colored
    if(with_alpha):
        zero_img = np.zeros((len(img), len(img[0]), 3))
    else:
        zero_img = np.zeros((len(img), len(img[0])))

    # sort by y values
    left_points = left_points.astype(np.int32)[np.argsort(left_points[:, 1])]
    right_points = right_points.astype(np.int32)[np.argsort(right_points[:, 1])][::-1]

    # Merge points -> [[p1], [p2]...]
    points = np.concatenate((left_points, right_points))

    # If with_alpha is True -> color image green, else color it white
    if(with_alpha):
        cv.fillPoly(zero_img, [points], color=[0,255,0])
    else:
        cv.fillPoly(zero_img, [points], color=255)
    return zero_img

Manipulation

This subsection implements functions for image manipulation:

  • Warp image perspective (warp(img, src, dst))

    • Changes the image perspective by transforming the source (src) points to destination (dst) points by performing the cv.warpPerspective function
  • Crop (crop(img, ROI))

    • Crops the image with the given Region of Interest (ROI)
  • Merge (merge(frame, img1, img2))

    • Merges to images to one. This function is used to merge color_space and canny_space.
  • Overlay (overlay_alpha(img, overlay), overlay(img, overlay)

    • Overlays the given image (img) with the overlay image with or without alpha.
# Warp image perspective
def warp(img, src=src, dst=dst):
    M = cv.getPerspectiveTransform(src, dst)
    return cv.warpPerspective(img, M, (img.shape[1], img.shape[0]))

# Crop image for region of interest
def crop(img, ROI):
    # Create blank img with same size as input img
    blank = np.zeros(img.shape[:2], np.uint8)

    # Fill region of interest
    region_of_interest = cv.fillPoly(blank, ROI, 255)

    # Create image of interest with region (resize)
    return cv.bitwise_and(img, img, mask=region_of_interest)

# Merge to masks
def merge(frame, img1, img2):
    both = frame.copy()
    both[np.where(np.logical_and(img1==0, img2==0))] = 0
    return both

# Overlay two images
def overlay(img, overlay):
    img[np.where(overlay!=0)] = [0,255,0]
    return img

# Overlay two images with alpha
def overlay_alpha(img, overlay):
    return cv.addWeighted(img, 1, overlay.astype(np.uint8), 0.5, 0.0)

Car detection

Our car detection uses the haar features .xml-file from Kelbu's real-time vehicle detection on GitHub.

We do the following two steps to detect cars:

  1. Detection of car (detect_cars(frame)) by using the cv.CascadeClassifier function with information of our haar features from Kelbu.
  2. Highlighting detected cars (highlight_cars(frame, cars)) by overlaying a green rectangle with cv.rectangle and a text with cv.putText on the original frame.
# Import haar features for car detection - credits to Kelbu (https://github.com/Kalebu/Real-time-Vehicle-Dection-Python)
cars_cascade = cv.CascadeClassifier('assets/haarcascade_car.xml')

# Detection of cars
def detect_cars(frame):
    cars = cars_cascade.detectMultiScale(frame, 1.15, 4)
    return cars

# Highlight cars -> Put rectangle and text around them
def highlight_cars(frame, cars):
    # Rectangle for every car that was found
    for (x, y, w, h) in cars:
        cv.rectangle(frame, (x, y), (x + w, y + h), color=(0, 255, 0), thickness=2)
        cv.putText(frame, "Car", (x + w // 2-20, y + h + 20), cv.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
    return frame

Exercises

This section contains all exercises which needs to be solved.

  • Show image (show_img(plt, title, img, numCols, pos, cmap))
    • Shows image on a defined plot
# Show image inside defined plot
def show_img(plt, title, img, numCols, pos, cmap):
    plt.subplot(1, numCols, pos)
    plt.title(title)
    plt.imshow(img, cmap)

Camera calibration

Exercise: Perform camera calibration (for Udacity image sources) and perspective transformation.

The images for calibrations include a chessboard with 9 rows and 6 columns. The defined rows and columns are not working for three images (calibration1.jpg, calibration4.jpg and calibration5.jpg). This can be ignored, because 17 images are enough for calibration.

We perform the following steps for show_chess_calibration():

  1. Use of calibrate_image(x) to read calibration image, find and show chessboard corners and append found points to imgpoints array.
  2. Use of undistort_image(img) function to undistort the image.
  3. Shows images: the original one, the image with chessboard corners and the undistorted image.
# Define columns and rows for chess board
width = 9
height = 6

# Arrays for obj and image points
objpoints = []
imgpoints = []

objp = np.zeros((width*height, 3), np.float32)
objp[:,:2] = np.mgrid[:width, :height].T.reshape(-1, 2)

# Calibrate image
def calibrate_image(x):
    # Read image and convert to gray
    image_path = './img/Udacity/calib/calibration' + str(x + 1) + '.jpg'
    img = cv.imread(image_path, -1)
    img_gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)

    # Find chess board corners
    criteria = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER, 30, 0.001)
    ret, corners = cv.findChessboardCorners(img, (width, height), None)
    
    # If corners are found add to obj array -> else return empty image
    if ret == True:
        # Add object points to array
        objpoints.append(objp)

        # Create corners and draw on image
        corners = cv.cornerSubPix(img_gray, corners, (11,11), (-1,-1), criteria)
        imgpoints.append(corners)
        drawn = cv.drawChessboardCorners(img, (width, height), corners, ret)
    else:
        drawn = np.zeros_like(img)
    return drawn

# Undistort image
def undistort_image(img):
    # Convert to gray and calibrate with found points
    img_gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
    ret, mtx, dist, rvecs, tvecs = cv.calibrateCamera(objpoints, imgpoints, img_gray.shape[::-1], None, None)

    # Find new camera matrix and undistort with that matrix
    h, w = img_gray.shape[:2]
    newcameramtx, roi = cv.getOptimalNewCameraMatrix(mtx, dist, (w,h), 1, (w,h))
    dst = cv.undistort(img_gray, mtx, dist, None, newcameramtx)

    # Crop the image
    x, y, w, h = roi
    dst = dst[y:y+h, x:x+w]
    return dst

def show_chess_calibration():
    all_images = [None]*20

    # First: calibrate all images
    for x in range(20):
        all_images[x] = []
        all_images[x].append(calibrate_image(x))

    # Then: undistort all images
    for x in range(20):
        image_path = './img/Udacity/calib/calibration' + str(x + 1) + '.jpg'
        img = cv.imread(image_path, -1)
        all_images[x].append(undistort_image(img))

        # Show original, calibrated image and undistorted image
        plt.figure(figsize=(10,10))
        show_img(plt, 'Image ' + str(x + 1), img, 3, 1, 'gray')
        show_img(plt, 'Image ' + str(x + 1) + ' calibrated', all_images[x][0], 3, 2, None)
        show_img(plt, 'Image ' + str(x + 1) + ' undistorted', all_images[x][1], 3, 3, 'gray')
        plt.show()
show_chess_calibration()

Chessboard 1 Chessboard 2 Chessboard 3 Chessboard 4 Chessboard 5 Chessboard 6 Chessboard 7 Chessboard 8 Chessboard 9 Chessboard 10 Chessboard 11 Chessboard 12 Chessboard 13 Chessboard 14 Chessboard 15 Chessboard 16 Chessboard 17 Chessboard 18 Chessboard 19 Chessboard 20

Segmentation

Exercise: Restrict the image to the area where the lanes are located.

Here we perform the warp(img) function to apply perspective transformation on all Udacity pictures.

def image_segmentation():
    for x in range(8):    
        # Read image, convert to rgb and warp it
        img = cv.imread('./img/Udacity/image00' + str(x + 1) + '.jpg', -1)
        img = cv.cvtColor(img, cv.COLOR_BGR2RGB)
        img_warped = warp(img)

        # Show images
        plt.figure(figsize=(10,10))
        show_img(plt, 'Original image ' + str(x + 1), img, 2, 1, None)
        show_img(plt, 'Warped image ' + str(x + 1), img_warped, 2, 2, None)
        plt.show()
image_segmentation()

Segmentation 1 Segmentation 2 Segmentation 3 Segmentation 4 Segmentation 5 Segmentation 6 Segmentation 7 Segmentation 8

Lane detection for KITTI images

Before applying our detection pipeline to the project_video.mp4 we want to test is with the given KITTI images:

Steps (8) to do:

  1. We adjust the pipeline settings (e.q. ROI) and enumerate all KITTI images
  2. We read the image and convert it from BGR to RGB
  3. We apply the canny edge filter to the grayed frame followed by cropping and warping
  4. We create our color space
  5. Apply sliding windows with both (canny edges and color space)
  6. Calculate curve and radius
  7. Fill area with color and warp image back
  8. Show results
def calc_kitti_images():
    imgs = ['09', '10', '11', '12', '13', '14', '15']

    # Step 1: Define source and destination for transformation
    src = np.array([[595, 340], [730, 340], [1150, 720], [145, 720]], np.float32)
    dst = np.array([[300, 0], [980, 0], [980, 720], [300, 720]], np.float32)

    # Define ROIs for cropping
    ROI = np.array([[(570, 360), (1150, 340), (1150, 720), (1000, 720) , (700, 480), (350, 720), (115, 720)]], dtype=np.int32)
    ROI2 = np.array([[(525, 400), (1150, 400), (1250, 720), (1000, 720) , (700, 480), (350, 720), (115, 720)]], dtype=np.int32)

    # Iterate through all images
    for img_num, img in enumerate(imgs):   
        # Step 2: Read image and convert into rgb
        frame = orig = cv.imread('./img/KITTI/image0' + img + '.jpg', -1)
        frame = cv.cvtColor(frame, cv.COLOR_BGR2RGB)

        # Step 3: Canny edge -> Convert to gray, calculate canny and crop image, then transform result
        gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
        canny = canny_space(gray, 100, 200)
        canny = crop(canny, ROI2)
        canny_t = warp(canny, src, dst) 

        # Step 4: Color space -> Crop image, transform image and apply color filters
        cropped = crop(frame, ROI)
        frame = warp(cropped, src, dst) 
        color = color_space(frame) 
             
        # Step 5: Sliding windows for merged canny and color filters    
        midpoint, lefts, rights = sliding_windows(merge(gray, canny_t, color))
        
        # Step 6: Calculate curve and radius
        left_fit, right_fit, radius = calc_curve(lefts, rights, frame)

        # Step 7: Fill area with color, warp back and overlay with original image. Convert image to RGB
        AOI = calc_area(frame, calc_lanes(left_fit, midpoint, True), calc_lanes(right_fit, midpoint, False), True)
        AOI = warp(AOI, dst,src)
        frame = overlay_alpha(orig, AOI)
        frame = cv.cvtColor(frame, cv.COLOR_RGB2BGR)

        # Show images
        plt.figure(figsize=(10,10))
        show_img(plt, 'KITTI Image ' + str(img_num + 1) + " (Canny + Color Filter)", merge(gray, canny_t, color), 2, 1, None)
        show_img(plt, 'KITTI Image ' + str(img_num + 1) + " (Kurven Radius: " + str(round(radius)) + ")", frame, 2, 2, None)
        plt.show()
calc_kitti_images()

KITTI 1 KITTI 2 KITTI 3 KITTI 4 KITTI 5 KITTI 6 KITTI 7

Realtime lane detection

Apply functions for lane detection on video (either project or challenge video) Car detection can be manually turned on, by setting the variable CAR_DETECTION to True

Iterate through every frame from video:

  • Calculate frame rate
  • Calculate steps for lane detection only every fifth frame (for performance reasons):
    1. Perform perspective transform on image
    2. Apply color mask to detect yellow and white lanes and close image to reduce noise
    3. Apply sliding windows to find points for curve
    4. Calculate curve and radius
    5. Fill area and transform area image back
  • Overlap area imgage on every frame to original
  • Show curve radius and fps count
# Open video file
video_file = 'challenge'
cap = cv.VideoCapture('./img/Udacity/' + video_file + '_video.mp4')

# Manually turn car detection on or off
CAR_DETECTION = False

# If challenge video is played -> Define different points for transformation 
CHALLENGE = (video_file == 'challenge') 
if(CHALLENGE):
  src = np.array([[600, 480], [760, 480], [1026, 700], [278, 700]], np.float32)
  dst = np.array([[300, 0], [980, 0], [980, 720], [300, 720]], np.float32)

# Check if camera opened successfully
if (cap.isOpened() == False):
  print("Error opening video stream or file")

# Start timer for fps counter
start_timer = time.time() - 0.01
frame_count = -1

# Read every frame
while(cap.isOpened()):
  ret, frame = cap.read()

  # Check if there is another frame
  if (frame is None):
    break
  orig = frame.copy()

  # Calculate Frame rate
  frame_count += 1
  ellapsed_time = time.time() - start_timer
  frame_rate = frame_count / ellapsed_time  

  # Calculate curve area only every fifth frame for performance reasons
  if (frame_count % 5 == 0):
    # Detect cars if car detection is on
    if (CAR_DETECTION):
      cars = detect_cars(frame)

    # Step 1: Warp image
    frame = warp(frame, src, dst)
   
    # Step 2: Apply color mask and close image for get rid of small distrubances
    color = color_space(frame)
    color = close(color, 10)

    # For challenge video: dilate and crop color mask
    if(CHALLENGE):
      color = dilate(color, 10)
      ROI = np.array([[(525, 360), (1150, 340), (1150, 720), (900, 720) , (700, 550), (350, 720), (115, 720)]], dtype=np.int32) 
      color = crop(color, ROI) 
    
    # Step 3: Sliding windows to get curve points    
    midpoint, lefts, rights = sliding_windows(color)

    # Step 4: Calculate curve and radius
    left_fit, right_fit, radius = calc_curve(lefts, rights, orig)
  
    # Step 5: Fill area and transform area back
    AOI = calc_area(frame, calc_lanes(left_fit, midpoint, True), calc_lanes(right_fit, midpoint, False), False)
    AOI = warp(AOI, dst, src)
  
  # Overlay street area on every image
  frame = overlay(orig, AOI)

  # If car detection is on: Draw rectangles around cars
  if (CAR_DETECTION):
    frame = highlight_cars(frame, cars)

  if ret == True:      
    # Add frame rate to video
    cv.putText(frame, "FPS: "+ str(round(frame_rate)), (0, 25), cv.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 0), 2, cv.LINE_AA)
    
    # Show curve radius (not for challenge video)
    if(not CHALLENGE):
      cv.putText(frame, "Curve radius: " + str(round(radius)).replace(".0", "") + "m", (len(frame[0])//2-150, 25), cv.FONT_HERSHEY_SIMPLEX, 1, (0, 100, 255), 2, cv.LINE_AA)
    cv.imshow('Frame', frame)

    # Close video with letter 'q'
    if cv.waitKey(25) & 0xFF == ord('q'):
      break
  else: 
    break

# When everything done, release the video capture object
cap.release()
cv.destroyAllWindows()

Results

Results and insights we gained from this project:

  • Prioritizing lanes is not neccessary, because we crop the image to the region of interest.
  • We reach real-time by only proccessing every fifth frame.
  • We tried many approaches (using canny edge filter or using canny edge filter plus color filter), but in the end the best results where reached by only using color filters.
  • Morphological filters (dilatation, erosion and closing) were very useful and helped to get better results.
  • Our first approaches worked only by putting the pixels from the color filter mask into the polyfit function, but the sliding windows algorithm lead to way better results.
  • We also tried using Chebyshev.fit, but polyfit worked much besser.
  • We noticed that overlapping the mask with the original image, drains a lot of ressources.
  • The solution only works for project and challenge video, but not for harder challenge.
  • Paint was useful for debugging ❤️

In conclusion, we needed to apply a lot of knowledge of image proccessing in general (also from the lecture), but to get the best results it was neccessary to adjust small parameters and often not whole concepts.

Credits

Credits to Dr. Daniel Slieter for providing us with material from lectures in digital image processing and to Kelbu's haar feature .xml-file for car detection.

Owner
LMF
DHBW Stuttgart students group since 2020
LMF
BboxToolkit is a tiny library of special bounding boxes.

BboxToolkit is a light codebase collecting some practical functions for the special-shape detection, such as oriented detection

jbwang1997 73 Jan 01, 2023
Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

MSAD Multi-Scale Aligned Distillation for Low-Resolution Detection Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya J

DV Lab 115 Dec 23, 2022
AI-based, context-driven network device ranking

Batea A batea is a large shallow pan of wood or iron traditionally used by gold prospectors for washing sand and gravel to recover gold nuggets. Batea

Secureworks Taegis VDR 269 Nov 26, 2022
HyperLib: Deep learning in the Hyperbolic space

HyperLib: Deep learning in the Hyperbolic space Background This library implements common Neural Network components in the hypberbolic space (using th

105 Dec 25, 2022
K Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching (To appear in RA-L 2022)

KCP The official implementation of KCP: k Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching, accepted for p

Yu-Kai Lin 109 Dec 14, 2022
I will implement Fastai in each projects present in this repository.

DEEP LEARNING FOR CODERS WITH FASTAI AND PYTORCH The repository contains a list of the projects which I have worked on while reading the book Deep Lea

Thinam Tamang 43 Dec 20, 2022
OpenFed: A Comprehensive and Versatile Open-Source Federated Learning Framework

OpenFed: A Comprehensive and Versatile Open-Source Federated Learning Framework Introduction OpenFed is a foundational library for federated learning

25 Dec 12, 2022
Cookiecutter PyTorch Lightning

Cookiecutter PyTorch Lightning Instructions # install cookiecutter pip install cookiecutter

Mazen 8 Nov 06, 2022
🧮 Matrix Factorization for Collaborative Filtering is just Solving an Adjoint Latent Dirichlet Allocation Model after All

Accompanying source code to the paper "Matrix Factorization for Collaborative Filtering is just Solving an Adjoint Latent Dirichlet Allocation Model A

Florian Wilhelm 39 Dec 03, 2022
Audio Domain Adaptation for Acoustic Scene Classification using Disentanglement Learning

Audio Domain Adaptation for Acoustic Scene Classification using Disentanglement Learning Reference Abeßer, J. & Müller, M. Towards Audio Domain Adapt

Jakob Abeßer 2 Jul 06, 2022
Multi-modal Text Recognition Networks: Interactive Enhancements between Visual and Semantic Features

Multi-modal Text Recognition Networks: Interactive Enhancements between Visual and Semantic Features | paper | Official PyTorch implementation for Mul

48 Dec 28, 2022
Change Detection in SAR Images Based on Multiscale Capsule Network

SAR_CD_MS_CapsNet Code for the paper "Change Detection in SAR Images Based on Multiscale Capsule Network" , IEEE Geoscience and Remote Sensing Letters

Feng Gao 21 Nov 29, 2022
Implementation of our paper "Video Playback Rate Perception for Self-supervised Spatio-Temporal Representation Learning".

PRP Introduction This is the implementation of our paper "Video Playback Rate Perception for Self-supervised Spatio-Temporal Representation Learning".

yuanyao366 39 Dec 29, 2022
Explaining in Style: Training a GAN to explain a classifier in StyleSpace

Explaining in Style: Official TensorFlow Colab Explaining in Style: Training a GAN to explain a classifier in StyleSpace Oran Lang, Yossi Gandelsman,

Google 197 Nov 08, 2022
SOTA easy to use PyTorch-based DL training library

Easily train or fine-tune SOTA computer vision models from one training repository. SuperGradients Introduction Welcome to SuperGradients, a free open

619 Jan 03, 2023
这是一个unet-pytorch的源码,可以训练自己的模型

Unet:U-Net: Convolutional Networks for Biomedical Image Segmentation目标检测模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Downl

Bubbliiiing 567 Jan 05, 2023
Global Pooling, More than Meets the Eye: Position Information is Encoded Channel-Wise in CNNs, ICCV 2021

Global Pooling, More than Meets the Eye: Position Information is Encoded Channel-Wise in CNNs, ICCV 2021 Global Pooling, More than Meets the Eye: Posi

Md Amirul Islam 32 Apr 24, 2022
Evaluation and Benchmarking of Speech Super-resolution Methods

Speech Super-resolution Evaluation and Benchmarking What this repo do: A toolbox for the evaluation of speech super-resolution algorithms. Unify the e

Haohe Liu (刘濠赫) 84 Dec 20, 2022
A mini lib that implements several useful functions binding to PyTorch in C++.

Torch-gather A mini library that implements several useful functions binding to PyTorch in C++. What does gather do? Why do we need it? When dealing w

maxwellzh 8 Sep 07, 2022
COVINS -- A Framework for Collaborative Visual-Inertial SLAM and Multi-Agent 3D Mapping

COVINS -- A Framework for Collaborative Visual-Inertial SLAM and Multi-Agent 3D Mapping Version 1.0 COVINS is an accurate, scalable, and versatile vis

ETHZ V4RL 183 Dec 27, 2022