This repository contains the code for designing risk bounded motion plans for car-like robot using Carla Simulator.

Overview

Nonlinear Risk Bounded Robot Motion Planning

This code simulates the bicycle dynamics of car by steering it on the road by avoiding another static car obstacle in a CARLA simulator. The ego_vehicle has to consider all the system and perception uncertainties to generate a risk-bounded motion plan and execute it with coherent risk assessment. Coherent risk assessment for a nonlinear robot like the car in this simulation is made possible using nonlinear model predictive control (NMPC) based steering law combined with Unscented Kalman filter for state estimation purpose. Finally, distributionally robust chance constraints applied using a temporal logic specifications evaluate the risk of a trajectory before being added to the sequence of trajectories forming a motion plan from the start to the destination.

Click the picture to watch the corresponding youtube video supporting our work

Motion Planning Using Carla Simulator

The code in this repository implements the algorithms and ideas from our following paper:

  1. V. Renganathan, S. Safaoui, A. Kothari, I. Shames, T. Summers, Risk Bounded Nonlinear Robot Motion Planning With Integrated Perception & Control, Submitted to the Special Issue on Risk-aware Autonomous Systems: Theory and Practice, Artificial Intelligence Journal, 2021.

Dependencies

  • Python 3.5+ (tested with 3.7.6)
  • Numpy
  • Scipy
  • Matplotlib
  • Casadi
  • Namedlist
  • Pickle
  • Carla

Installing

You will need the following two items to run the codes. After that there is no other formal package installation procedure; simply download this repository and run the Python files.

  • CARLA SIMULATOR VERSION: 0.9.10
  • UNREAL ENGINE VERSION: 4.24.3

Modules of an autonomy stack

There are two main modules for understanding this whole package

  1. First, a high level motion planner has to run and it will generate a reference trajectory for the car from start to the end
  2. Second, a low level tracking controller will enable the car to track the reference trajectory despite the realized noises.

Procedure to run the code

  1. Run the python code Generate_Monte_Carlo_Noises.py which will generate and load the required noise parameters and data required for simulation into pickle files
  2. Run the python code Run_Path_Planner.py
  3. The code will run for specified number of iterations and produces all required data
  4. Then load the cooresponding pickle file data in file main.py in the line number #488.
  5. Run the main.py file with the Carla executable being open already
  6. The simulation will run in the Carla simulator where the car will track the reference trajectory and results are stored in pickle files
  7. To see the tracking results, run the python file Tracked_Path_Plotter.py

Running Monte-Carlo Simulations

  1. Create a new folder called monte_carlo_results in the same directory where the python file monte_carlo_car.py resides.
  2. Update the trial_num at line #1554 in the file monte_carlo_car.py and run it while the Carla executable is open (It will automatically load the noise realizations corresponding to the trial_num from the pickle files)
  3. After the simulation is over, automatically the results are stored under the folder monte_carlo_results with a specific trial name
  4. Repeat the process by changing trial number in step 2 and run again.
  5. Once the all trials are completed, run the python file monte_carlo_results_plotter.py to plot the monte-carlo simulation results

Variations

  • Instead of Distributionally robust chance constraints, if you would like to have a simple Gaussian Chance Constraints, then change self.DRFlag = False in line 852 in the file DR_RRTStar_Planner.py
  • Choose your own state estimator UKF or EKF by commenting and uncommenting the corresponding estimator in lines 26-27 of file State_Estimator.py

Funding Acknowledgement

This work is partially supported by Defence Science and Technology Group, through agreement MyIP: ID10266 entitled Hierarchical Verification of Autonomy Architectures, the Australian Government, via grant AUSMURIB000001 associated with ONR MURI grant N00014-19-1-2571, and by the United States Air Force Office of Scientific Research under award number FA2386-19-1-4073.

Contributing Authors

  1. Venkatraman Renganathan - UT Dallas
  2. Sleiman Safaoui - UT Dallas
  3. Aadi Kothari - UT Dallas
  4. Benjamin Gravell - UT Dallas
  5. Dr. Iman Shames - Australian National University
  6. Dr. Tyler Summers - UT Dallas

Affiliation

TSummersLab - Control, Optimization & Networks Laboratory (CONLab)

A Multi-modal Model Chinese Spell Checker Released on ACL2021.

ReaLiSe ReaLiSe is a multi-modal Chinese spell checking model. This the office code for the paper Read, Listen, and See: Leveraging Multimodal Informa

DaDa 106 Dec 29, 2022
Code for ICDM2020 full paper: "Sub-graph Contrast for Scalable Self-Supervised Graph Representation Learning"

Subg-Con Sub-graph Contrast for Scalable Self-Supervised Graph Representation Learning (Jiao et al., ICDM 2020): https://arxiv.org/abs/2009.10273 Over

34 Jul 06, 2022
Project NII pytorch scripts

project-NII-pytorch-scripts By Xin Wang, National Institute of Informatics, since 2021 I am a new pytorch user. If you have any suggestions or questio

Yamagishi and Echizen Laboratories, National Institute of Informatics 184 Dec 23, 2022
Another pytorch implementation of FCN (Fully Convolutional Networks)

FCN-pytorch-easiest Trying to be the easiest FCN pytorch implementation and just in a get and use fashion Here I use a handbag semantic segmentation f

Y. Dong 158 Dec 21, 2022
Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation

Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation Prerequisites This repo is built upon a local copy of transfo

Jixuan Wang 10 Sep 28, 2022
Instance-Dependent Partial Label Learning

Instance-Dependent Partial Label Learning Installation pip install -r requirements.txt Run the Demo benchmark-random mnist python -u main.py --gpu 0 -

17 Dec 29, 2022
All-in-one Docker container that allows a user to explore Nautobot in a lab environment.

Nautobot Lab This container is not for production use! Nautobot Lab is an all-in-one Docker container that allows a user to quickly get an instance of

Nautobot 29 Sep 16, 2022
Contains source code for the winning solution of the xView3 challenge

Winning Solution for xView3 Challenge This repository contains source code and pretrained models for my (Eugene Khvedchenya) solution to xView 3 Chall

Eugene Khvedchenya 51 Dec 30, 2022
Histology images query (unsupervised)

110-1-NTU-DBME5028-Histology-images-query Final Project: Histology images query (unsupervised) Kaggle: https://www.kaggle.com/c/histology-images-query

1 Jan 05, 2022
A PyTorch Reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution

TecoGAN-PyTorch Introduction This is a PyTorch reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution (VSR). Please refer to

165 Dec 17, 2022
[CVPR 2020] GAN Compression: Efficient Architectures for Interactive Conditional GANs

GAN Compression project | paper | videos | slides [NEW!] GAN Compression is accepted by T-PAMI! We released our T-PAMI version in the arXiv v4! [NEW!]

MIT HAN Lab 1k Jan 07, 2023
Systematic generalisation with group invariant predictions

Requirements are Python 3, TensorFlow v1.14, Numpy, Scipy, Scikit-Learn, Matplotlib, Pillow, Scikit-Image, h5py, tqdm. Experiments were run on V100 GPUs (16 and 32GB).

Faruk Ahmed 30 Dec 01, 2022
Code for Paper "Evidential Softmax for Sparse MultimodalDistributions in Deep Generative Models"

Evidential Softmax for Sparse Multimodal Distributions in Deep Generative Models Abstract Many applications of generative models rely on the marginali

Stanford Intelligent Systems Laboratory 9 Jun 06, 2022
PyJokes - Joking around with Python library pyjokes

Hi, it's Muhaimin again 👋 This is something unorthodox but cool. Don't forget t

Muhaimin A. Salay Kanton 1 Feb 02, 2022
Road Crack Detection Using Deep Learning Methods

Road-Crack-Detection-Using-Deep-Learning-Methods This is my Diploma Thesis ¨Road Crack Detection Using Deep Learning Methods¨ under the supervision of

Aggelos Katsaliros 3 May 03, 2022
Testing and Estimation of structural breaks in Stata

xtbreak estimating and testing for many known and unknown structural breaks in time series and panel data. For an overview of xtbreak test see xtbreak

Jan Ditzen 13 Jun 19, 2022
An implementation of an abstract algebra for music tones (pitches).

nbdev template Use this template to more easily create your nbdev project. If you are using an older version of this template, and want to upgrade to

Open Music Kit 0 Oct 10, 2022
Jarvis Project is a basic virtual assistant that uses TensorFlow for learning.

Jarvis_proyect Jarvis Project is a basic virtual assistant that uses TensorFlow for learning. Latest version 0.1 Features: Good morning protocol Tell

Anze Kovac 3 Aug 31, 2022
PyTorch implementation of Progressive Growing of GANs for Improved Quality, Stability, and Variation.

PyTorch implementation of Progressive Growing of GANs for Improved Quality, Stability, and Variation. Warning: the master branch might collapse. To ob

559 Dec 14, 2022
Official Pytorch Implementation of: "ImageNet-21K Pretraining for the Masses"(2021) paper

ImageNet-21K Pretraining for the Masses Paper | Pretrained models Official PyTorch Implementation Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, Lihi Zelni

574 Jan 02, 2023