EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation

Related tags

Deep LearningEdiBERT
Overview

EdiBERT, a generative model for image editing

EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation. The same EdiBERT model, derived from a single training, can be used on a wide variety of tasks.

edibert_example

We follow the implementation of Taming-Transformers (https://github.com/CompVis/taming-transformers). Main modifications can be found in: taming/models/bert_transformer.py ; scripts/sample_mask_likelihood_maximization.py.

Requirements

A suitable conda environment named edibert can be created and activated with:

conda env create -f environment.yaml
conda activate edibert

FFHQ

Download FFHQ dataset (https://github.com/NVlabs/ffhq-dataset) and put it into data/ffhq/.

Training BERT

In the logs/ folder, download and extract the FFHQ VQGAN:

gdown --id '1P_wHLRfdzf1DjsAH_tG10GXk9NKEZqTg'
tar -xvzf 2021-04-23T18-19-01_ffhq_vqgan.tar.gz

Training on 1 GPUs:

python main.py --base configs/ffhq_transformer_bert_2D.yaml -t True --gpus 0,

Training on 2 GPUs:

python main.py --base configs/ffhq_transformer_bert_2D.yaml -t True --gpus 0,1

Running pre-trained BERT on composite/scribble-edited images

In the logs/ folder, download and extract the FFHQ VQGAN:

gdown --id '1P_wHLRfdzf1DjsAH_tG10GXk9NKEZqTg'
tar -xvzf 2021-04-23T18-19-01_ffhq_vqgan.tar.gz

In the logs/ folder, download and extract the FFHQ BERT:

gdown --id '1YGDd8XyycKgBp_whs9v1rkYdYe4Oxfb3'
tar -xvzf 2021-10-14T16-32-28_ffhq_transformer_bert_2D.tar.gz

folders and place them into logs.

Then, launch the following script for composite images:

python scripts/sample_mask_likelihood_maximization.py -r logs/2021-10-14T16-32-28_ffhq_transformer_bert_2D/checkpoints/epoch=000019.ckpt \
--image_folder data/ffhq_collages/ --mask_folder data/ffhq_collages_masks/ --image_list data/ffhq_collages.txt --keep_img \
--dilation_sampling 1 -k 100 -t 1.0 --batch_size 5 --bert --epochs 2  \
--device 0 --random_order \
--mask_collage --collage_frequency 3 --gaussian_smoothing_collage

Then, launch the following script for edits images:

python scripts/sample_mask_likelihood_maximization.py -r logs/2021-10-14T16-32-28_ffhq_transformer_bert_2D/checkpoints/epoch=000019.ckpt \
--image_folder data/ffhq_edits/ --mask_folder data/ffhq_edits_masks/ --image_list data/ffhq_edits.txt --keep_img \
--dilation_sampling 1 -k 100 -t 1.0 --batch_size 5 --bert --epochs 2  \
--device 0 --random_order \
--mask_collage --collage_frequency 3 --gaussian_smoothing_collage

The samples can then be found in logs/my_model/samples/. Here, the --batch_size argument corresponds to the number of EdiBERT generations per image.

Notebooks for playing with completion/denoising with BERT

Notebooks for image denoising and image inpainting can also be found in the main folder.

Principled Detection of Out-of-Distribution Examples in Neural Networks

ODIN: Out-of-Distribution Detector for Neural Networks This is a PyTorch implementation for detecting out-of-distribution examples in neural networks.

189 Nov 29, 2022
An excellent hash algorithm combining classical sponge structure and RNN.

SHA-RNN Recurrent Neural Network with Chaotic System for Hash Functions Anonymous Authors [摘要] 在这次作业中我们提出了一种新的 Hash Function —— SHA-RNN。其以海绵结构为基础,融合了混

Houde Qian 5 May 15, 2022
Turning SymPy expressions into JAX functions

sympy2jax Turn SymPy expressions into parametrized, differentiable, vectorizable, JAX functions. All SymPy floats become trainable input parameters. S

Miles Cranmer 38 Dec 11, 2022
The official repository for our paper "The Neural Data Router: Adaptive Control Flow in Transformers Improves Systematic Generalization".

Codebase for learning control flow in transformers The official repository for our paper "The Neural Data Router: Adaptive Control Flow in Transformer

Csordás Róbert 24 Oct 15, 2022
Geometric Vector Perceptron --- a rotation-equivariant GNN for learning from biomolecular structure

Geometric Vector Perceptron Code to accompany Learning from Protein Structure with Geometric Vector Perceptrons by B Jing, S Eismann, P Suriana, RJL T

Dror Lab 85 Dec 29, 2022
A style-based Quantum Generative Adversarial Network

Style-qGAN A style based Quantum Generative Adversarial Network (style-qGAN) model for Monte Carlo event generation. Tutorial We have prepared a noteb

9 Nov 24, 2022
This code is a toolbox that uses Torch library for training and evaluating the ERFNet architecture for semantic segmentation.

ERFNet This code is a toolbox that uses Torch library for training and evaluating the ERFNet architecture for semantic segmentation. NEW!! New PyTorch

Edu 104 Jan 05, 2023
Eth brownie struct encoding example

eth-brownie struct encoding example Overview This repository contains an example of encoding a struct, so that it can be used in a function call, usin

Ittai Svidler 2 Mar 04, 2022
A high performance implementation of HDBSCAN clustering.

HDBSCAN HDBSCAN - Hierarchical Density-Based Spatial Clustering of Applications with Noise. Performs DBSCAN over varying epsilon values and integrates

2.3k Jan 02, 2023
Self-Supervised Image Denoising via Iterative Data Refinement

Self-Supervised Image Denoising via Iterative Data Refinement Yi Zhang1, Dasong Li1, Ka Lung Law2, Xiaogang Wang1, Hongwei Qin2, Hongsheng Li1 1CUHK-S

Zhang Yi 72 Jan 01, 2023
A Dynamic Residual Self-Attention Network for Lightweight Single Image Super-Resolution

DRSAN A Dynamic Residual Self-Attention Network for Lightweight Single Image Super-Resolution Karam Park, Jae Woong Soh, and Nam Ik Cho Environments U

4 May 10, 2022
A graph adversarial learning toolbox based on PyTorch and DGL.

GraphWar: Arms Race in Graph Adversarial Learning NOTE: GraphWar is still in the early stages and the API will likely continue to change. 🚀 Installat

Jintang Li 54 Jan 05, 2023
Chinese license plate recognition

AgentCLPR 简介 一个基于 ONNXRuntime、AgentOCR 和 License-Plate-Detector 项目开发的中国车牌检测识别系统。 车牌识别效果 支持多种车牌的检测和识别(其中单层车牌识别效果较好): 单层车牌: [[[[373, 282], [69, 284],

AgentMaker 26 Dec 25, 2022
Class-Attentive Diffusion Network for Semi-Supervised Classification [AAAI'21] (official implementation)

Class-Attentive Diffusion Network for Semi-Supervised Classification Official Implementation of AAAI 2021 paper Class-Attentive Diffusion Network for

Jongin Lim 7 Sep 20, 2022
An implementation of IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG Classification

IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG Classification The repostiory consists of the code, results and data set links for

12 Dec 26, 2022
Rotated Box Is Back : Accurate Box Proposal Network for Scene Text Detection

Rotated Box Is Back : Accurate Box Proposal Network for Scene Text Detection This material is supplementray code for paper accepted in ICDAR 2021 We h

NCSOFT 30 Dec 21, 2022
Embracing Single Stride 3D Object Detector with Sparse Transformer

SST: Single-stride Sparse Transformer This is the official implementation of paper: Embracing Single Stride 3D Object Detector with Sparse Transformer

TuSimple 385 Dec 28, 2022
This git repo contains the implementation of my ML project on Heart Disease Prediction

Introduction This git repo contains the implementation of my ML project on Heart Disease Prediction. This is a real-world machine learning model/proje

Aryan Dutta 1 Feb 02, 2022
Multitask Learning Strengthens Adversarial Robustness

Multitask Learning Strengthens Adversarial Robustness

Columbia University 15 Jun 10, 2022
TensorFlow implementation of "Variational Inference with Normalizing Flows"

[TensorFlow 2] Variational Inference with Normalizing Flows TensorFlow implementation of "Variational Inference with Normalizing Flows" [1] Concept Co

YeongHyeon Park 7 Jun 08, 2022