Chinese license plate recognition

Overview

AgentCLPR

GitHub forks GitHub Repo stars Pypi Downloads GitHub release (latest by date including pre-releases) GitHub

简介

车牌识别效果

  • 支持多种车牌的检测和识别(其中单层车牌识别效果较好):

    • 单层车牌:

        [[[[373, 282], [69, 284], [73, 188], [377, 185]], ['苏E05EV8', 0.9923506379127502]]]
        [[[[393, 278], [318, 279], [318, 257], [393, 255]], ['VA30093', 0.7386096119880676]]]
        [[[[[487, 366], [359, 372], [361, 331], [488, 324]], ['皖K66666', 0.9409016370773315]]]]
        [[[[304, 500], [198, 498], [199, 467], [305, 468]], ['鲁QF02599', 0.995299220085144]]]
        [[[[309, 219], [162, 223], [160, 181], [306, 177]], ['使198476', 0.9938704371452332]]]
        [[[[957, 918], [772, 920], [771, 862], [956, 860]], ['陕A06725D', 0.9791222810745239]]]
      
    • 双层车牌:

        [[[[399, 298], [256, 301], [256, 232], [400, 230]], ['浙G66666', 0.8870148431461757]]]
        [[[[398, 308], [228, 305], [227, 227], [398, 230]], ['陕A00087', 0.9578166644088313]]]
        [[[[352, 234], [190, 244], [190, 171], [352, 161]], ['宁A66666', 0.9958433652812175]]]
      

快速使用

  • 快速安装

    # 安装 AgentCLPR
    $ pip install agentclpr
    
    # 根据设备平台安装合适版本的 ONNXRuntime
    
    # CPU 版本(推荐非 win10 系统,无 CUDA 支持的设备安装)
    $ pip install onnxruntime
    
    # GPU 版本(推荐有 CUDA 支持的设备安装)
    $ pip install onnxruntime-gpu
    
    # DirectML 版本(推荐 win10 系统的设备安装,可实现通用的显卡加速)
    $ pip install onnxruntime-directml
    
    # 更多版本的安装详情请参考 ONNXRuntime 官网
  • 简单调用:

    # 导入 CLPSystem 模块
    from agentclpr import CLPSystem
    
    # 初始化车牌识别模型
    clp = CLPSystem()
    
    # 使用模型对图像进行车牌识别
    results = clp('test.jpg')
  • 服务器部署:

    • 启动 AgentCLPR Server 服务

      $ agentclpr server
    • Python 调用

      import cv2
      import json
      import base64
      import requests
      
      # 图片 Base64 编码
      def cv2_to_base64(image):
          data = cv2.imencode('.jpg', image)[1]
          image_base64 = base64.b64encode(data.tobytes()).decode('UTF-8')
          return image_base64
      
      # 读取图片
      image = cv2.imread('test.jpg')
      image_base64 = cv2_to_base64(image)
      
      # 构建请求数据
      data = {
          'image': image_base64
      }
      
      # 发送请求
      url = "http://127.0.0.1:5000/ocr"
      r = requests.post(url=url, data=json.dumps(data))
      
      # 打印预测结果
      print(r.json())

Contact us

Email : [email protected]
QQ Group : 1005109853

You might also like...
EmoTag helps you train emotion detection model for Chinese audios

emoTag emoTag helps you train emotion detection model for Chinese audios. Environment pip install -r requirement.txt Data We used Emotional Speech Dat

Code for the paper
Code for the paper "MASTER: Multi-Aspect Non-local Network for Scene Text Recognition" (Pattern Recognition 2021)

MASTER-PyTorch PyTorch reimplementation of "MASTER: Multi-Aspect Non-local Network for Scene Text Recognition" (Pattern Recognition 2021). This projec

Face-Recognition-Attendence-System - This face recognition Attendence system using Python

Face-Recognition-Attendence-System I have developed this face recognition Attend

The world's simplest facial recognition api for Python and the command line
The world's simplest facial recognition api for Python and the command line

Face Recognition You can also read a translated version of this file in Chinese 简体中文版 or in Korean 한국어 or in Japanese 日本語. Recognize and manipulate fa

PyTorch implementation of
PyTorch implementation of "Conformer: Convolution-augmented Transformer for Speech Recognition" (INTERSPEECH 2020)

PyTorch implementation of Conformer: Convolution-augmented Transformer for Speech Recognition. Transformer models are good at capturing content-based

TDN: Temporal Difference Networks for Efficient Action Recognition
TDN: Temporal Difference Networks for Efficient Action Recognition

TDN: Temporal Difference Networks for Efficient Action Recognition Overview We release the PyTorch code of the TDN(Temporal Difference Networks).

Bottleneck Transformers for Visual Recognition
Bottleneck Transformers for Visual Recognition

Bottleneck Transformers for Visual Recognition Experiments Model Params (M) Acc (%) ResNet50 baseline (ref) 23.5M 93.62 BoTNet-50 18.8M 95.11% BoTNet-

A PyTorch Toolbox for Face Recognition
A PyTorch Toolbox for Face Recognition

FaceX-Zoo FaceX-Zoo is a PyTorch toolbox for face recognition. It provides a training module with various supervisory heads and backbones towards stat

AI grand challenge 2020 Repo (Speech Recognition Track)
AI grand challenge 2020 Repo (Speech Recognition Track)

KorBERT를 활용한 한국어 텍스트 기반 위협 상황인지(2020 인공지능 그랜드 챌린지) 본 프로젝트는 ETRI에서 제공된 한국어 korBERT 모델을 활용하여 폭력 기반 한국어 텍스트를 분류하는 다양한 분류 모델들을 제공합니다. 본 개발자들이 참여한 2020 인공지

Owner
AgentMaker
Focus on deep learning tools
AgentMaker
(AAAI2022) Style Mixing and Patchwise Prototypical Matching for One-Shot Unsupervised Domain Adaptive Semantic Segmentation

SM-PPM This is a Pytorch implementation of our paper "Style Mixing and Patchwise Prototypical Matching for One-Shot Unsupervised Domain Adaptive Seman

W-zx-Y 10 Dec 07, 2022
Torch-mutable-modules - Use in-place and assignment operations on PyTorch module parameters with support for autograd

Torch Mutable Modules Use in-place and assignment operations on PyTorch module p

Kento Nishi 7 Jun 06, 2022
From a body shape, infer the anatomic skeleton.

OSSO: Obtaining Skeletal Shape from Outside (CVPR 2022) This repository contains the official implementation of the skeleton inference from: OSSO: Obt

Marilyn Keller 166 Dec 28, 2022
Rethinking the Importance of Implementation Tricks in Multi-Agent Reinforcement Learning

RIIT Our open-source code for RIIT: Rethinking the Importance of Implementation Tricks in Multi-AgentReinforcement Learning. We implement and standard

405 Jan 06, 2023
Random-Afg - Afghanistan Random Old Idz Cloner Tools

AFGHANISTAN RANDOM OLD IDZ CLONER TOOLS Install $ apt update $ apt upgrade $ apt

MAHADI HASAN AFRIDI 5 Jan 26, 2022
Code to reproduce the experiments from our NeurIPS 2021 paper " The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective"

Code To run: python runner.py new --save SAVE_NAME --data PATH_TO_DATA_DIR --dataset DATASET --model model_name [options] --n 1000 - train - t

Geoff Pleiss 5 Dec 12, 2022
Domain Generalization for Mammography Detection via Multi-style and Multi-view Contrastive Learning

MSVCL_MICCAI2021 Installation Please follow the instruction in pytorch-CycleGAN-and-pix2pix to install. Example Usage An example of vendor-styles tran

Jaron Lee 11 Oct 19, 2022
Python wrapper to access the amazon selling partner API

PYTHON-AMAZON-SP-API Amazon Selling-Partner API If you have questions, please join on slack Contributions very welcome! Installation pip install pytho

Michael Primke 330 Jan 06, 2023
A public available dataset for road boundary detection in aerial images

Topo-boundary This is the official github repo of paper Topo-boundary: A Benchmark Dataset on Topological Road-boundary Detection Using Aerial Images

Zhenhua Xu 79 Jan 04, 2023
Select, weight and analyze complex sample data

Sample Analytics In large-scale surveys, often complex random mechanisms are used to select samples. Estimates derived from such samples must reflect

samplics 37 Dec 15, 2022
Core ML tools contain supporting tools for Core ML model conversion, editing, and validation.

Core ML Tools Use coremltools to convert machine learning models from third-party libraries to the Core ML format. The Python package contains the sup

Apple 3k Jan 08, 2023
ECLARE: Extreme Classification with Label Graph Correlations

ECLARE ECLARE: Extreme Classification with Label Graph Correlations @InProceedings{Mittal21b, author = "Mittal, A. and Sachdeva, N. and Agrawal

Extreme Classification 35 Nov 06, 2022
Implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Environments.

ALPHAMEPOL This repository contains the implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Envir

3 Dec 23, 2021
Uni-Fold: Training your own deep protein-folding models.

Uni-Fold: Training your own deep protein-folding models. This package provides and implementation of a trainable, Transformer-based deep protein foldi

DeepModeling 88 Jan 03, 2023
Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)

Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)

105 Nov 07, 2022
Tensorflow implementation of "Learning Deep Features for Discriminative Localization"

Weakly_detector Tensorflow implementation of "Learning Deep Features for Discriminative Localization" B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and

Taeksoo Kim 363 Jun 29, 2022
EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration

EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration Ruikang Xu, Zeyu Xiao, Jie Huang, Yueyi Zhang, Zhiwei Xiong. EDPN: Enhanced Deep Pyra

69 Dec 15, 2022
Minimalistic PyTorch training loop

Backbone for PyTorch training loop Will try to keep it minimalistic. pip install back from back import Bone Features Progress bar Checkpoints saving/l

Kashin 4 Jan 16, 2020
LSTM and QRNN Language Model Toolkit for PyTorch

LSTM and QRNN Language Model Toolkit This repository contains the code used for two Salesforce Research papers: Regularizing and Optimizing LSTM Langu

Salesforce 1.9k Jan 08, 2023
Unified MultiWOZ evaluation scripts for the context-to-response task.

MultiWOZ Context-to-Response Evaluation Standardized and easy to use Inform, Success, BLEU ~ See the paper ~ Easy-to-use scripts for standardized eval

Tomáš Nekvinda 38 Dec 13, 2022