Beyond Image to Depth: Improving Depth Prediction using Echoes (CVPR 2021)

Overview

Beyond Image to Depth: Improving Depth Prediction using Echoes (CVPR 2021)

Kranti Kumar Parida, Siddharth Srivastava, Gaurav Sharma.

We address the problem of estimating depth with multi modal audio visual data. Inspired by the ability of animals, such as bats and dolphins, to infer distance of objects with echolocation, we propose an end-to-end deep learning based pipeline utilizing RGB images, binaural echoes and estimated material properties of various objects within a scene for the task of depth estimation.

[Project] [Paper]

teaser

Requirements

The code is tesed with

- Python 3.6 
- PyTorch 1.6.0
- Numpy 1.19.5

Dataset

Replica-VisualEchoes can be obatined from here. We have used the 128x128 image resolution for our experiment.

MatterportEchoes is an extension of existing matterport3D dataset. In order to obtain the raw frames please forward the access request acceptance from the authors of matterport3D dataset. We will release the procedure to obtain the frames and echoes using habitat-sim and soundspaces in near future.

Pre-trained Model

We have provided pre-trained model for both the datasets here. For each of the dataset four different parts of the model are saved individually with name rgbdepth_*, audiodepth_*, material_*, attention_*, where * represents the name of the dataset, i.e. replica or mp3d.

Training

To train the model, first download the pre-trained material net from above link.

python train.py \
--validation_on \
--dataset mp3d \
--img_path path_to_img_folder \
--metadatapath path_to_metadata \
--audio_path path_to_audio_folder \
--checkpoints_dir path_to_save_checkpoints \
--init_material_weight path_to_pre-trained_material_net

Evaluation

To evaluate the method using the pre-trained model, download the models for the corresponding dataset and the dataset.

  • Evalution for Replica dataset
python test.py \
--img_path path_to_img_folder \
--audio_path path_to_audio_data \
--checkpoints_dir path_to_the_pretrained_model \
--dataset replica
  • Evaluation for Matterport3D dataset
python test.py \
--img_path path_to_img_folder \
--audio_path path_to_audio_data \
--checkpoints_dir path_to_the_pretrained_model \
--dataset mp3d

License and Citation

The usage of this software is under MIT License.

@inproceedings{parida2021beyond,
  title={Beyond Image to Depth: Improving Depth Prediction using Echoes},
  author={Parida, Kranti and Srivastava, Siddharth and Sharma, Gaurav},
  booktitle={Proceedings of the IEEE/CVF conference on computer vision and pattern recognition},
  year={2021}
}

Acknowledgement

Some portion of the code are adapted from Ruohan Gao. Thanks Ruohan!

Owner
Kranti Kumar Parida
Kranti Kumar Parida
Convert ONNX model graph to Keras model format.

Convert ONNX model graph to Keras model format.

Grigory Malivenko 175 Dec 28, 2022
PyTorch implementation of Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy

Anomaly Transformer in PyTorch This is an implementation of Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy. This pape

spencerbraun 160 Dec 19, 2022
Civsim is a basic civilisation simulation and modelling system built in Python 3.8.

Civsim Introduction Civsim is a basic civilisation simulation and modelling system built in Python 3.8. It requires the following packages: perlin_noi

17 Aug 08, 2022
deep-table implements various state-of-the-art deep learning and self-supervised learning algorithms for tabular data using PyTorch.

deep-table implements various state-of-the-art deep learning and self-supervised learning algorithms for tabular data using PyTorch.

63 Oct 17, 2022
Qcover is an open source effort to help exploring combinatorial optimization problems in Noisy Intermediate-scale Quantum(NISQ) processor.

Qcover is an open source effort to help exploring combinatorial optimization problems in Noisy Intermediate-scale Quantum(NISQ) processor. It is devel

33 Nov 11, 2022
Dyalog-apl-docset - Dyalog APL Dash Docset Generator

Dyalog APL Dash Docset Generator o alasa e kili sona kepeken tenpo lili a A Dash

Maciej Goszczycki 1 Jan 10, 2022
MassiveSumm: a very large-scale, very multilingual, news summarisation dataset

MassiveSumm: a very large-scale, very multilingual, news summarisation dataset This repository contains links to data and code to fetch and reproduce

Daniel Varab 19 Dec 16, 2022
DeepGNN is a framework for training machine learning models on large scale graph data.

DeepGNN Overview DeepGNN is a framework for training machine learning models on large scale graph data. DeepGNN contains all the necessary features in

Microsoft 45 Jan 01, 2023
A BaSiC Tool for Background and Shading Correction of Optical Microscopy Images

BaSiC Matlab code accompanying A BaSiC Tool for Background and Shading Correction of Optical Microscopy Images by Tingying Peng, Kurt Thorn, Timm Schr

Marr Lab 34 Dec 18, 2022
Tandem Mass Spectrum Prediction with Graph Transformers

MassFormer This is the original implementation of MassFormer, a graph transformer for small molecule MS/MS prediction. Check out the preprint on arxiv

Röst Lab 13 Oct 27, 2022
Quantized tflite models for ailia TFLite Runtime

ailia-models-tflite Quantized tflite models for ailia TFLite Runtime About ailia TFLite Runtime ailia TF Lite Runtime is a TensorFlow Lite compatible

ax Inc. 13 Dec 23, 2022
PyTorch implementation of Deformable Convolution

Deformable Convolutional Networks in PyTorch This repo is an implementation of Deformable Convolution. Ported from author's MXNet implementation. Buil

411 Dec 16, 2022
Implementation of hyperparameter optimization/tuning methods for machine learning & deep learning models

Hyperparameter Optimization of Machine Learning Algorithms This code provides a hyper-parameter optimization implementation for machine learning algor

Li Yang 1.1k Dec 19, 2022
Mmrotate - OpenMMLab Rotated Object Detection Benchmark

OpenMMLab website HOT OpenMMLab platform TRY IT OUT 📘 Documentation | 🛠️ Insta

OpenMMLab 1.2k Jan 04, 2023
Deployment of PyTorch chatbot with Flask

Chatbot Deployment with Flask and JavaScript In this tutorial we deploy the chatbot I created in this tutorial with Flask and JavaScript. This gives 2

Patrick Loeber (Python Engineer) 107 Dec 29, 2022
[ICRA 2022] CaTGrasp: Learning Category-Level Task-Relevant Grasping in Clutter from Simulation

This is the official implementation of our paper: Bowen Wen, Wenzhao Lian, Kostas Bekris, and Stefan Schaal. "CaTGrasp: Learning Category-Level Task-R

Bowen Wen 199 Jan 04, 2023
A Gura parser implementation for Python

Gura Python parser This repository contains the implementation of a Gura (compliant with version 1.0.0) format parser in Python. Installation pip inst

Gura Config Lang 19 Jan 25, 2022
PyTorch implementation of "ContextNet: Improving Convolutional Neural Networks for Automatic Speech Recognition with Global Context" (INTERSPEECH 2020)

ContextNet ContextNet has CNN-RNN-transducer architecture and features a fully convolutional encoder that incorporates global context information into

Sangchun Ha 24 Nov 24, 2022
Spectral Temporal Graph Neural Network (StemGNN in short) for Multivariate Time-series Forecasting

Spectral Temporal Graph Neural Network for Multivariate Time-series Forecasting This repository is the official implementation of Spectral Temporal Gr

Microsoft 306 Dec 29, 2022
Package to compute Mauve, a similarity score between neural text and human text. Install with `pip install mauve-text`.

MAUVE MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE

Krishna Pillutla 182 Jan 02, 2023