Multivariate Time Series Transformer, public version

Overview

Multivariate Time Series Transformer Framework

This code corresponds to the paper: George Zerveas et al. A Transformer-based Framework for Multivariate Time Series Representation Learning, in Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD '21), August 14-18, 2021. ArXiV version: https://arxiv.org/abs/2010.02803

If you find this code or any of the ideas in the paper useful, please consider citing:

@inproceedings{10.1145/3447548.3467401,
author = {Zerveas, George and Jayaraman, Srideepika and Patel, Dhaval and Bhamidipaty, Anuradha and Eickhoff, Carsten},
title = {A Transformer-Based Framework for Multivariate Time Series Representation Learning},
year = {2021},
isbn = {9781450383325},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3447548.3467401},
doi = {10.1145/3447548.3467401},
booktitle = {Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining},
pages = {2114–2124},
numpages = {11},
keywords = {regression, framework, multivariate time series, classification, transformer, deep learning, self-supervised learning, unsupervised learning, imputation},
location = {Virtual Event, Singapore},
series = {KDD '21}
}

Setup

Instructions refer to Unix-based systems (e.g. Linux, MacOS).

cd mvts_transformer/

Inside an already existing root directory, each experiment will create a time-stamped output directory, which contains model checkpoints, performance metrics per epoch, predictions per sample, the experiment configuration, log files etc. The following commands assume that you have created a new root directory inside the project directory like this: mkdir experiments.

[We recommend creating and activating a conda or other Python virtual environment (e.g. virtualenv) to install packages and avoid conficting package requirements; otherwise, to run pip, the flag --user or sudo privileges will be necessary.]

pip install -r requirements.txt

[Note: Because sometimes newer versions of packages break backward compatibility with previous versions or other packages, instead or requirements.txt you can use failsafe_requirements.txt to use the versions which have been tested to work with this codebase.]

Download dataset files and place them in separate directories, one for regression and one for classification.

Classification: http://www.timeseriesclassification.com/Downloads/Archives/Multivariate2018_ts.zip

Regression: https://zenodo.org/record/3902651#.YB5P0OpOm3s

Example commands

To see all command options with explanations, run: python src/main.py --help

You should replace $1 below with the name of the desired dataset. The commands shown here specify configurations intended for BeijingPM25Quality for regression and SpokenArabicDigits for classification.

[To obtain best performance for other datasets, use the hyperparameters as given in the Supplementary Material of the paper. Appropriate downsampling with the option --subsample_factor can be often used on datasets with longer time series to speedup training, without significant performance degradation.]

The configurations as shown below will evaluate the model on the TEST set periodically during training, and at the end of training.

Besides the console output and the logfile output.log, you can monitor the evolution of performance (after installing tensorboard: pip install tensorboard) with:

tensorboard dev upload --name my_exp --logdir path/to/output_dir

Train models from scratch

Regression

(Note: the loss reported for regression is the Mean Square Error, i.e. without the Root)

python src/main.py --output_dir path/to/experiments --comment "regression from Scratch" --name $1_fromScratch_Regression --records_file Regression_records.xls --data_dir path/to/Datasets/Regression/$1/ --data_class tsra --pattern TRAIN --val_pattern TEST --epochs 100 --lr 0.001 --optimizer RAdam  --pos_encoding learnable --task regression

Classification

python src/main.py --output_dir experiments --comment "classification from Scratch" --name $1_fromScratch --records_file Classification_records.xls --data_dir path/to/Datasets/Classification/$1/ --data_class tsra --pattern TRAIN --val_pattern TEST --epochs 400 --lr 0.001 --optimizer RAdam  --pos_encoding learnable  --task classification  --key_metric accuracy

Pre-train models (unsupervised learning through input masking)

Can be used for any downstream task, e.g. regression, classification, imputation.

Make sure that the network architecture parameters of the pretrained model match the parameters of the desired fine-tuned model (e.g. use --d_model 64 for SpokenArabicDigits).

python src/main.py --output_dir experiments --comment "pretraining through imputation" --name $1_pretrained --records_file Imputation_records.xls --data_dir /path/to/$1/ --data_class tsra --pattern TRAIN --val_ratio 0.2 --epochs 700 --lr 0.001 --optimizer RAdam --batch_size 32 --pos_encoding learnable --d_model 128

Fine-tune pretrained models

Make sure that network architecture parameters (e.g. d_model) used to fine-tune a model match the pretrained model.

Regression

python src/main.py --output_dir experiments --comment "finetune for regression" --name BeijingPM25Quality_finetuned --records_file Regression_records.xls --data_dir /path/to/Datasets/Regression/BeijingPM25Quality/ --data_class tsra --pattern TRAIN --val_pattern TEST  --epochs 200 --lr 0.001 --optimizer RAdam --pos_encoding learnable --d_model 128 --load_model path/to/BeijingPM25Quality_pretrained/checkpoints/model_best.pth --task regression --change_output --batch_size 128

Classification

python src/main.py --output_dir experiments --comment "finetune for classification" --name SpokenArabicDigits_finetuned --records_file Classification_records.xls --data_dir /path/to/Datasets/Classification/SpokenArabicDigits/ --data_class tsra --pattern TRAIN --val_pattern TEST --epochs 100 --lr 0.001 --optimizer RAdam --batch_size 128 --pos_encoding learnable --d_model 64 --load_model path/to/SpokenArabicDigits_pretrained/checkpoints/model_best.pth --task classification --change_output --key_metric accuracy
Denoising Normalizing Flow

Denoising Normalizing Flow Christian Horvat and Jean-Pascal Pfister 2021 We combine Normalizing Flows (NFs) and Denoising Auto Encoder (DAE) by introd

CHrvt 17 Oct 15, 2022
The mini-MusicNet dataset

mini-MusicNet A music-domain dataset for multi-label classification Music transcription is sequence-to-sequence prediction problem: given an audio per

John Thickstun 4 Nov 09, 2022
Using Tensorflow Object Detection API to detect Waymo open dataset

Waymo-2D-Object-Detection Using Tensorflow Object Detection API to detect Waymo open dataset Result CenterNet Training Loss SSD ResNet Training Loss C

76 Dec 12, 2022
PlenOctrees: NeRF-SH Training & Conversion

PlenOctrees Official Repo: NeRF-SH training and conversion This repository contains code to train NeRF-SH and to extract the PlenOctree, constituting

Alex Yu 323 Dec 29, 2022
A medical imaging framework for Pytorch

Welcome to MedicalTorch MedicalTorch is an open-source framework for PyTorch, implementing an extensive set of loaders, pre-processors and datasets fo

Christian S. Perone 799 Jan 03, 2023
Bringing Computer Vision and Flutter together , to build an awesome app !!

Bringing Computer Vision and Flutter together , to build an awesome app !! Explore the Directories Flutter · Machine Learning Table of Contents About

Padmanabha Banerjee 14 Apr 07, 2022
The versatile ocean simulator, in pure Python, powered by JAX.

Veros is the versatile ocean simulator -- it aims to be a powerful tool that makes high-performance ocean modeling approachable and fun. Because Veros

TeamOcean 245 Dec 20, 2022
GeDML is an easy-to-use generalized deep metric learning library

GeDML is an easy-to-use generalized deep metric learning library

Borui Zhang 32 Dec 05, 2022
Motion and Shape Capture from Sparse Markers

MoSh++ This repository contains the official chumpy implementation of mocap body solver used for AMASS: AMASS: Archive of Motion Capture as Surface Sh

Nima Ghorbani 135 Dec 23, 2022
Computations and statistics on manifolds with geometric structures.

Geomstats Code Continuous Integration Code coverage (numpy) Code coverage (autograd, tensorflow, pytorch) Documentation Community NEWS: Geomstats is r

875 Dec 31, 2022
A library of multi-agent reinforcement learning components and systems

Mava: a research framework for distributed multi-agent reinforcement learning Table of Contents Overview Getting Started Supported Environments System

InstaDeep Ltd 463 Dec 23, 2022
WeakVRD-Captioning - Implementation of paper Improving Image Captioning with Better Use of Caption

WeakVRD-Captioning - Implementation of paper Improving Image Captioning with Better Use of Caption

30 Oct 28, 2022
Code to accompany the paper "Finding Bipartite Components in Hypergraphs", which is published in NeurIPS'21.

Finding Bipartite Components in Hypergraphs This repository contains code to accompany the paper "Finding Bipartite Components in Hypergraphs", publis

Peter Macgregor 5 May 06, 2022
Non-Imaging Transient Reconstruction And TEmporal Search (NITRATES)

Non-Imaging Transient Reconstruction And TEmporal Search (NITRATES) This repo contains the full NITRATES pipeline for maximum likelihood-driven discov

13 Nov 08, 2022
Code for the RA-L (ICRA) 2021 paper "SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition"

SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition [ArXiv+Supplementary] [IEEE Xplore RA-L 2021] [ICRA 2021 YouTube Video]

Sourav Garg 63 Dec 12, 2022
Cosine Annealing With Warmup

CosineAnnealingWithWarmup Formulation The learning rate is annealed using a cosine schedule over the course of learning of n_total total steps with an

zhuyun 4 Apr 18, 2022
PyTorch-lightning implementation of the ESFW module proposed in our paper Edge-Selective Feature Weaving for Point Cloud Matching

Edge-Selective Feature Weaving for Point Cloud Matching This repository contains a PyTorch-lightning implementation of the ESFW module proposed in our

5 Feb 14, 2022
Rohit Ingole 2 Mar 24, 2022
Neural Scene Flow Prior (NeurIPS 2021 spotlight)

Neural Scene Flow Prior Xueqian Li, Jhony Kaesemodel Pontes, Simon Lucey Will appear on Thirty-fifth Conference on Neural Information Processing Syste

Lilac Lee 85 Jan 03, 2023
SEC'21: Sparse Bitmap Compression for Memory-Efficient Training onthe Edge

Training Deep Learning Models on The Edge Training on the Edge enables continuous learning from new data for deployed neural networks on memory-constr

Brown University Scale Lab 4 Nov 18, 2022