Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding (CVPR2022)

Overview

Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding

by Qiaole Dong*, Chenjie Cao*, Yanwei Fu

Paper and Supplemental Material (arXiv)

LICENSE

Pipeline

Click to expand

The overview of our ZITS. At first, the TSR model is used to restore structures with low resolutions. Then the simple CNN based upsampler is leveraged to upsample edge and line maps. Moreover, the upsampled sketch space is encoded and added to the FTR through ZeroRA to restore the textures.

TO DO

We have updated weights of TSR!

Our project page is available at https://dqiaole.github.io/ZITS_inpainting/.

  • Releasing inference codes.
  • Releasing pre-trained moodel.
  • Releasing training codes.

Preparation

Click to expand
  1. Preparing the environment:

    as there are some bugs when using GP loss with DDP (link), we strongly recommend installing Apex without CUDA extensions via torch1.9.0 for the multi-gpu training

    conda create -n train_env python=3.6
    conda activate train_env
    pip install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html
    pip install -r requirement.txt
    git clone https://github.com/NVIDIA/apex
    cd apex
    pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" ./
    
  2. For training, MST provide irregular and segmentation masks (download) with different masking rates. And you should define the mask file list before the training as in MST.

  3. Download the pretrained masked wireframe detection model to the './ckpt' fold: LSM-HAWP (MST ICCV2021 retrained from HAWP CVPR2020).

  4. Prepare the wireframes:

    as the MST train the LSM-HAWP in Pytorch 1.3.1 and it causes problem (link) when tested in Pytorch 1.9, we recommand to inference the lines(wireframes) with torch==1.3.1. If the line detection is not based on torch1.3.1, the performance may drop a little.

    conda create -n wireframes_inference_env python=3.6
    conda activate wireframes_inference_env
    pip install torch==1.3.1 torchvision==0.4.2
    pip install -r requirement.txt
    

    then extract wireframes with following code

    python lsm_hawp_inference.py --ckpt_path <best_lsm_hawp.pth> --input_path <input image path> --output_path <output image path> --gpu_ids '0'
    
  5. If you need to train the model, please download the pretrained models for perceptual loss, provided by LaMa:

    mkdir -p ade20k/ade20k-resnet50dilated-ppm_deepsup/
    wget -P ade20k/ade20k-resnet50dilated-ppm_deepsup/ http://sceneparsing.csail.mit.edu/model/pytorch/ade20k-resnet50dilated-ppm_deepsup/encoder_epoch_20.pth
    

Eval

Click to expand

Download pretrained models on Places2 here.

Link for BaiduDrive, password:qnm5

Batch Test

For batch test, you need to complete steps 3 and 4 above.

Put the pretrained models to the './ckpt' fold. Then modify the config file according to you image, mask and wireframes path.

Test on 256 images:

conda activate train_env
python FTR_inference.py --path ./ckpt/zits_places2 --config_file ./config_list/config_ZITS_places2.yml --GPU_ids '0'

Test on 512 images:

conda activate train_env
python FTR_inference.py --path ./ckpt/zits_places2_hr --config_file ./config_list/config_ZITS_HR_places2.yml --GPU_ids '0'

Single Image Test

Note: For single image test, environment 'wireframes_inference_env' in step 4 is recommended for a better line detection. This code only supports squared images (or they will be center cropped).

conda activate wireframes_inference_env
python single_image_test.py --path <ckpt_path> --config_file <config_path> \
 --GPU_ids '0' --img_path ./image.png --mask_path ./mask.png --save_path ./

Training

Click to expand

⚠️ Warning: The training codes is not fully tested yet after refactoring

Training TSR

python TSR_train.py --name places2_continous_edgeline --data_path [training_data_path] \
 --train_line_path [training_wireframes_path] \
 --mask_path ['irregular_mask_list.txt', 'coco_mask_list.txt'] \
 --train_epoch 12 --validation_path [validation_data_path] \
 --val_line_path [validation_wireframes_path] \
 --valid_mask_path [validation_mask] --nodes 1 --gpus 1 --GPU_ids '0' --AMP
python TSR_train.py --name places2_continous_edgeline --data_path [training_data_path] \
 --train_line_path [training_wireframes_path] \
 --mask_path ['irregular_mask_list.txt', 'coco_mask_list.txt'] \
 --train_epoch 15 --validation_path [validation_data_path] \
 --val_line_path [validation_wireframes_path] \
 --valid_mask_path [validation_mask] --nodes 1 --gpus 1 --GPU_ids '0' --AMP --MaP

Train SSU

We recommend to use the pretrained SSU. You can also train your SSU refered to https://github.com/ewrfcas/StructureUpsampling.

Training LaMa First

python FTR_train.py --nodes 1 --gpus 1 --GPU_ids '0' --path ./ckpt/lama_places2 \
--config_file ./config_list/config_LAMA.yml --lama

Training FTR

256:

python FTR_train.py --nodes 1 --gpus 2 --GPU_ids '0,1' --path ./ckpt/places2 \
--config_file ./config_list/config_ZITS_places2.yml --DDP

256~512:

python FTR_train.py --nodes 1 --gpus 2 --GPU_ids '0,1' --path ./ckpt/places2_HR \
--config_file ./config_list/config_ZITS_HR_places2.yml --DDP

More 1K Results

Click to expand

Acknowledgments

Cite

If you found our program helpful, please consider citing:

@inproceedings{dong2022incremental,
      title={Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding}, 
      author={Qiaole Dong and Chenjie Cao and Yanwei Fu},
      booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
      year={2022}
}
Owner
Qiaole Dong
Qiaole Dong
Awesome Remote Sensing Toolkit based on PaddlePaddle.

基于飞桨框架开发的高性能遥感图像处理开发套件,端到端地完成从训练到部署的全流程遥感深度学习应用。 最新动态 PaddleRS 即将发布alpha版本!欢迎大家试用 简介 PaddleRS是遥感科研院所、相关高校共同基于飞桨开发的遥感处理平台,支持遥感图像分类,目标检测,图像分割,以及变化检测等常用遥

146 Dec 11, 2022
Code from the paper "High-Performance Brain-to-Text Communication via Handwriting"

High-Performance Brain-to-Text Communication via Handwriting Overview This repo is associated with this manuscript, preprint and dataset. The code can

Francis R. Willett 306 Jan 03, 2023
Contains a bunch of different python programm tasks

py_tasks Contains a bunch of different python programm tasks Armstrong.py - calculate Armsrong numbers in range from 0 to n with / without cache and c

Dmitry Chmerenko 1 Dec 17, 2021
The first public PyTorch implementation of Attentive Recurrent Comparators

arc-pytorch PyTorch implementation of Attentive Recurrent Comparators by Shyam et al. A blog explaining Attentive Recurrent Comparators Visualizing At

Sanyam Agarwal 150 Oct 14, 2022
Tools for manipulating UVs in the Blender viewport.

UV Tool Suite for Blender A set of tools to make editing UVs easier in Blender. These tools can be accessed wither through the Kitfox - UV panel on th

35 Oct 29, 2022
TransCD: Scene Change Detection via Transformer-based Architecture

TransCD: Scene Change Detection via Transformer-based Architecture

wangzhixue 29 Dec 11, 2022
Human head pose estimation using Keras over TensorFlow.

RealHePoNet: a robust single-stage ConvNet for head pose estimation in the wild.

Rafael Berral Soler 71 Jan 05, 2023
Good Classification Measures and How to Find Them

Good Classification Measures and How to Find Them This repository contains supplementary materials for the paper "Good Classification Measures and How

Yandex Research 7 Nov 13, 2022
OpenLT: An open-source project for long-tail classification

OpenLT: An open-source project for long-tail classification Supported Methods for Long-tailed Recognition: Cross-Entropy Loss Focal Loss (ICCV'17) Cla

Ming Li 37 Sep 15, 2022
Official code for 'Weakly-supervised Video Anomaly Detection with Robust Temporal Feature Magnitude Learning' [ICCV 2021]

RTFM This repo contains the Pytorch implementation of our paper: Weakly-supervised Video Anomaly Detection with Robust Temporal Feature Magnitude Lear

Yu Tian 242 Jan 08, 2023
Chinese clinical named entity recognition using pre-trained BERT model

Chinese clinical named entity recognition (CNER) using pre-trained BERT model Introduction Code for paper Chinese clinical named entity recognition wi

Xiangyang Li 109 Dec 14, 2022
Code for EMNLP 2021 paper: "Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training"

SCAPT-ABSA Code for EMNLP2021 paper: "Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training" Overvie

Zhengyan Li 66 Dec 04, 2022
Distributing reference energies for SMIRNOFF implementations

Warning: This code is currently experimental and under active development. Is it not yet suitable for distribution or use as reference implementation.

Open Force Field Initiative 1 Dec 07, 2021
Repository for code and dataset for our EMNLP 2021 paper - “So You Think You’re Funny?”: Rating the Humour Quotient in Standup Comedy.

AI-OpenMic Dataset The dataset is available for download via the follwing link. Repository for code and dataset for our EMNLP 2021 paper - “So You Thi

6 Oct 26, 2022
Estimating Example Difficulty using Variance of Gradients

Estimating Example Difficulty using Variance of Gradients This repository contains source code necessary to reproduce some of the main results in the

Chirag Agarwal 48 Dec 26, 2022
Implementation of Shape Generation and Completion Through Point-Voxel Diffusion

Shape Generation and Completion Through Point-Voxel Diffusion Project | Paper Implementation of Shape Generation and Completion Through Point-Voxel Di

Linqi Zhou 103 Dec 29, 2022
PyTorch implementation of saliency map-aided GAN for Auto-demosaic+denosing

Saiency Map-aided GAN for RAW2RGB Mapping The PyTorch implementations and guideline for Saiency Map-aided GAN for RAW2RGB Mapping. 1 Implementations B

Yuzhi ZHAO 20 Oct 24, 2022
Easily benchmark PyTorch model FLOPs, latency, throughput, max allocated memory and energy consumption

⏱ pytorch-benchmark Easily benchmark model inference FLOPs, latency, throughput, max allocated memory and energy consumption Install pip install pytor

Lukas Hedegaard 21 Dec 22, 2022
A torch.Tensor-like DataFrame library supporting multiple execution runtimes and Arrow as a common memory format

TorchArrow (Warning: Unstable Prototype) This is a prototype library currently under heavy development. It does not currently have stable releases, an

Facebook Research 536 Jan 06, 2023
Implementation of parameterized soft-exponential activation function.

Soft-Exponential-Activation-Function: Implementation of parameterized soft-exponential activation function. In this implementation, the parameters are

Shuvrajeet Das 1 Feb 23, 2022