Vertex AI: Serverless framework for MLOPs (ESP / ENG)

Overview

Vertex AI: Serverless framework for MLOPs (ESP / ENG)

Español

Qué es esto?

Este repo contiene un pipeline end to end diseñado usando el SDK de Kubeflow Pipelines (KFP). En el contexto del uso de Vertex AI como solución, la idea es construir una arquitectura de machine learning lo más automatizada posible, integrando algunos de los principales servicios de Google Cloud Platform (GCP) tales como BigQuery (data warehousing), Google Cloud Storage (almacenamiento de objetos) y Container Registry (repositorio de inágenes de Docker).

Cómo lo corro?

  • Primero, ejecutar la notebook pipeline_setup.ipynb. Contiene la configuración de la infraestructura que será utilizada: se crean datasets en BigQuery y buckets en GCS y se instalan librerías necesarias. Además se crean imágenes de Docker y se pushea a Container Registry para los jobs de tuneos de hiperparámetros.
  • Segundo, dentro de la carpeta components se encuentra la notebook components_definition.ipynb que deberá ejecutarse para generar los .yamls que serán invocados en la notebook principal de ejecución.
  • Por último, seguir los pasos indicados en pipeline_run.ipynb. Algunos parámetros como la cantidad de trials de hiperparámetros o los tipos de máquina deseadas para algunos pasos pueden ser fácilmente modificables.

TO-DO

agregar costo estimado permisos

English

What is this?

This repo contains an end to end pipeline designed using Kubelow Pipelines SDK (KFP). Using Vertex AI as a main solution, the idea is to build a machine learning architecture as automated as possible, integrating some of the main Google Cloud Platform (GCP) services, such as BigQuery (data warehousing), Google Cloud Storage (storage system) and Container Registry (Docker images repository).

How do I run it?

  • First, execute pipeline_setup.ipynb. It contains the infraestructure configuration to be used: BigQuery datasets and GCS buckets are created and installs the necessary libraries. It also creates Docker images and pushes them to Container Registry in order to perform hyperparameter tuning jobs.
  • Second, in the components folder there's a notebook called components_definition.ipynb which should be executed to generate the .yamls to be invoked in the main notebook execution.
  • Last, follow the steps in pipeline_run.ipynb. Some parameters, as hyperparameter trials or machine types for given steps of the process can be easily modified.

To-do

estimated cost roles

Owner
Hernán Escudero
Lead Data Scientist & ML Engineer at @CoreBI R & Python // Shiny Developer
Hernán Escudero
Reimplementation of Dynamic Multi-scale filters for Semantic Segmentation.

Paddle implementation of Dynamic Multi-scale filters for Semantic Segmentation.

Hongqiang.Wang 2 Nov 01, 2021
ADGAN - The Implementation of paper Controllable Person Image Synthesis with Attribute-Decomposed GAN

ADGAN - The Implementation of paper Controllable Person Image Synthesis with Attribute-Decomposed GAN CVPR 2020 (Oral); Pose and Appearance Attributes Transfer;

Men Yifang 400 Dec 29, 2022
Dark Finix: All in one hacking framework with almost 100 tools

Dark Finix - Hacking Framework. Dark Finix is a all in one hacking framework wit

Md. Nur habib 2 Feb 18, 2022
[MedIA2021]MIDeepSeg: Minimally Interactive Segmentation of Unseen Objects from Medical Images Using Deep Learning

MIDeepSeg: Minimally Interactive Segmentation of Unseen Objects from Medical Images Using Deep Learning [MedIA or Arxiv] and [Demo] This repository pr

Healthcare Intelligence Laboratory 92 Dec 08, 2022
EGNN - Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch

EGNN - Pytorch Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch. May be eventually used for Alphafold2 replication. This

Phil Wang 259 Jan 04, 2023
YOLOX is a high-performance anchor-free YOLO, exceeding yolov3~v5 with ONNX, TensorRT, ncnn, and OpenVINO supported.

Introduction YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and ind

7.7k Jan 03, 2023
BESS: Balanced Evolutionary Semi-Stacking for Disease Detection via Partially Labeled Imbalanced Tongue Data

Balanced-Evolutionary-Semi-Stacking Code for the paper ''BESS: Balanced Evolutionary Semi-Stacking for Disease Detection via Partially Labeled Imbalan

0 Jan 16, 2022
Code base of object detection

rmdet code base of object detection. 环境安装: 1. 安装conda python环境 - `conda create -n xxx python=3.7/3.8` - `conda activate xxx` 2. 运行脚本,自动安装pytorch1

3 Mar 08, 2022
Implementation for Homogeneous Unbalanced Regularized Optimal Transport

HUROT: An Homogeneous formulation of Unbalanced Regularized Optimal Transport. This repository provides code related to this preprint. This is an alph

Théo Lacombe 1 Feb 17, 2022
[ICCV 2021] Deep Hough Voting for Robust Global Registration

Deep Hough Voting for Robust Global Registration, ICCV, 2021 Project Page | Paper | Video Deep Hough Voting for Robust Global Registration Junha Lee1,

Junha Lee 10 Dec 02, 2022
A basic reminder tool written in Python.

A simple Python Reminder Here's a basic reminder tool written in Python that speaks to the user and sends a notification. Run pip3 install pyttsx3 w

Sachit Yadav 4 Feb 05, 2022
Official implementation of "SinIR: Efficient General Image Manipulation with Single Image Reconstruction" (ICML 2021)

SinIR (Official Implementation) Requirements To install requirements: pip install -r requirements.txt We used Python 3.7.4 and f-strings which are in

47 Oct 11, 2022
An implementation for Neural Architecture Search with Random Labels (CVPR 2021 poster) on Pytorch.

Neural Architecture Search with Random Labels(RLNAS) Introduction This project provides an implementation for Neural Architecture Search with Random L

18 Nov 08, 2022
Super-Fast-Adversarial-Training - A PyTorch Implementation code for developing super fast adversarial training

Super-Fast-Adversarial-Training This is a PyTorch Implementation code for develo

LBK 26 Dec 02, 2022
TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition

TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition Xue, Wenyuan, et al. "TGRNet: A Table Graph Reconstruction Network for Ta

Wenyuan 68 Jan 04, 2023
High dimensional black-box optimizer using Latent Action Monte Carlo Tree Search algorithm

LA-MCTS The code is based of paper Learning Search Space Partition for Black-box Optimization using Monte Carlo Tree Search. Component LA-MCTS has thr

Meta Research 18 Oct 24, 2022
A curated list of Generative Deep Art projects, tools, artworks, and models

Generative Deep Art A curated list of Generative Deep Art projects, tools, artworks, and models Inbox Get started with making AI art in 2022 – deeplea

Filipe Calegario 251 Jan 03, 2023
High-Resolution Image Synthesis with Latent Diffusion Models

Latent Diffusion Models arXiv | BibTeX High-Resolution Image Synthesis with Latent Diffusion Models Robin Rombach*, Andreas Blattmann*, Dominik Lorenz

CompVis Heidelberg 5.6k Dec 30, 2022
Codes for TIM2021 paper "Anchor-Based Spatio-Temporal Attention 3-D Convolutional Networks for Dynamic 3-D Point Cloud Sequences"

Codes for TIM2021 paper "Anchor-Based Spatio-Temporal Attention 3-D Convolutional Networks for Dynamic 3-D Point Cloud Sequences"

Intelligent Robotics and Machine Vision Lab 4 Jul 19, 2022
A method to perform unsupervised cross-region adaptation of crop classifiers trained with satellite image time series.

TimeMatch Official source code of TimeMatch: Unsupervised Cross-region Adaptation by Temporal Shift Estimation by Joachim Nyborg, Charlotte Pelletier,

Joachim Nyborg 17 Nov 01, 2022