Diverse Image Captioning with Context-Object Split Latent Spaces (NeurIPS 2020)

Overview

Diverse Image Captioning with Context-Object Split Latent Spaces

This repository is the PyTorch implementation of the paper:

Diverse Image Captioning with Context-Object Split Latent Spaces (NeurIPS 2020)

Shweta Mahajan and Stefan Roth

We additionally include evaluation code from Luo et al. in the folder GoogleConceptualCaptioning , which has been patched for compatibility.

Requirements

The following code is written in Python 3.6.10 and CUDA 9.0.

Requirements:

  • torch 1.1.0
  • torchvision 0.3.0
  • nltk 3.5
  • inflect 4.1.0
  • tqdm 4.46.0
  • sklearn 0.0
  • h5py 2.10.0

To install requirements:

conda config --add channels pytorch
conda config --add channels anaconda
conda config --add channels conda-forge
conda config --add channels conda-forge/label/cf202003
conda create -n <environment_name> --file requirements.txt
conda activate <environment_name>

Preprocessed data

The dataset used in this project for assessing accuracy and diversity is COCO 2014 (m-RNN split). The full dataset is available here.

We use the Faster R-CNN features for images similar to Anderson et al.. We additionally require "classes"/"scores" fields detected for image regions. The classes correspond to Visual Genome.

Download instructions

Preprocessed training data is available here as hdf5 files. The provided hdf5 files contain the following fields:

  • image_id: ID of the COCO image
  • num_boxes: The proposal regions detected from Faster R-CNN
  • features: ResNet-101 features of the extracted regions
  • classes: Visual genome classes of the extracted regions
  • scores: Scores of the Visual genome classes of the extracted regions

Note that the ["image_id","num_boxes","features"] fields are identical to Anderson et al.

Create a folder named coco and download the preprocessed training and test datasets from the coco folder in the drive link above as follows (it is also possible to directly download the entire coco folder from the drive link):

  1. Download the following files for training on COCO 2014 (m-RNN split):
coco/coco_train_2014_adaptive_withclasses.h5
coco/coco_val_2014_adaptive_withclasses.h5
coco/coco_val_mRNN.txt
coco/coco_test_mRNN.txt
  1. Download the following files for training on held-out COCO (novel object captioning):
coco/coco_train_2014_noc_adaptive_withclasses.h5
coco/coco_train_extra_2014_noc_adaptive_withclasses.h5
  1. Download the following files for testing on held-out COCO (novel object captioning):
coco/coco_test_2014_noc_adaptive_withclasses.h5
  1. Download the (caption) annotation files and place them in a subdirectory coco/annotations (mirroring the Google drive folder structure)
coco/annotations/captions_train2014.json
coco/annotations/captions_val2014.json
  1. Download the following files from the drive link in a seperate folder data (outside coco). These files contain the contextual neighbours for pseudo supervision:
data/nn_final.pkl
data/nn_noc.pkl

For running the train/test scripts (described in the following) "pathToData"/"nn_dict_path" in params.json and params_noc.json needs to be set to the coco/data folder created above.

Verify Folder Structure after Download

The folder structure of coco after data download should be as follows,

coco
 - annotations
   - captions_train2014.json
   - captions_val2014.json
 - coco_val_mRNN.txt
 - coco_test_mRNN.txt
 - coco_train_2014_adaptive_withclasses.h5
 - coco_val_2014_adaptive_withclasses.h5
 - coco_train_2014_noc_adaptive_withclasses.h5
 - coco_train_extra_2014_noc_adaptive_withclasses.h5
 - coco_test_2014_noc_adaptive_withclasses.h5
data
 - coco_classname.txt
 - visual_genome_classes.txt
 - vocab_coco_full.pkl
 - nn_final.pkl
 - nn_noc.pkl

Training

Please follow the following instructions for training:

  1. Set hyperparameters for training in params.json and params_noc.json.
  2. Train a model on COCO 2014 for captioning,
   	python ./scripts/train.py
  1. Train a model for diverse novel object captioning,
   	python ./scripts/train_noc.py

Please note that the data folder provides the required vocabulary.

Memory requirements

The models were trained on a single nvidia V100 GPU with 32 GB memory. 16 GB is sufficient for training a single run.

Pre-trained models and evaluation

We provide pre-trained models for both captioning on COCO 2014 (mRNN split) and novel object captioning. Please follow the following steps:

  1. Download the pre-trained models from here to the ckpts folder.

  2. For evaluation of oracle scores and diversity, we follow Luo et al.. In the folder GoogleConceptualCaptioning download the cider and in the cococaption folder run the download scripts,

   	./GoogleConceptualCaptioning/cococaption/get_google_word2vec_model.sh
   	./GoogleConceptualCaptioning/cococaption/get_stanford_models.sh
   	python ./scripts/eval.py
  1. For diversity evaluation create the required numpy file for consensus re-ranking using,
   	python ./scripts/eval_diversity.py

For consensus re-ranking follow the steps here. To obtain the final diversity scores, follow the instructions of DiversityMetrics. Convert the numpy file to required json format and run the script evalscripts.py

  1. To evaluate the F1 score for novel object captioning,
   	python ./scripts/eval_noc.py

Results

Oracle evaluation on the COCO dataset

B4 B3 B2 B1 CIDEr METEOR ROUGE SPICE
COS-CVAE 0.633 0.739 0.842 0.942 1.893 0.450 0.770 0.339

Diversity evaluation on the COCO dataset

Unique Novel mBLEU Div-1 Div-2
COS-CVAE 96.3 4404 0.53 0.39 0.57

F1-score evaluation on the held-out COCO dataset

bottle bus couch microwave pizza racket suitcase zebra average
COS-CVAE 35.4 83.6 53.8 63.2 86.7 69.5 46.1 81.7 65.0

Bibtex

@inproceedings{coscvae20neurips,
  title     = {Diverse Image Captioning with Context-Object Split Latent Spaces},
  author    = {Mahajan, Shweta and Roth, Stefan},
  booktitle = {Advances in Neural Information Processing Systems (NeurIPS)},
  year = {2020}
}
Owner
Visual Inference Lab @TU Darmstadt
Visual Inference Lab @TU Darmstadt
Real life contra a deep learning project built using mediapipe and openc

real-life-contra Description A python script that translates the body movement into in game control. Welcome to all new real life contra a deep learni

Programminghut 7 Jan 26, 2022
Codes accompanying the paper "Learning Nearly Decomposable Value Functions with Communication Minimization" (ICLR 2020)

NDQ: Learning Nearly Decomposable Value Functions with Communication Minimization Note This codebase accompanies paper Learning Nearly Decomposable Va

Tonghan Wang 69 Nov 26, 2022
Github Traffic Insights as Prometheus metrics.

github-traffic Github Traffic collects your repository's traffic data and exposes it as Prometheus metrics. Grafana dashboard that displays the metric

Grafana Labs 34 Oct 27, 2022
Code-free deep segmentation for computational pathology

NoCodeSeg: Deep segmentation made easy! This is the official repository for the manuscript "Code-free development and deployment of deep segmentation

André Pedersen 26 Nov 23, 2022
I will implement Fastai in each projects present in this repository.

DEEP LEARNING FOR CODERS WITH FASTAI AND PYTORCH The repository contains a list of the projects which I have worked on while reading the book Deep Lea

Thinam Tamang 43 Dec 20, 2022
DetCo: Unsupervised Contrastive Learning for Object Detection

DetCo: Unsupervised Contrastive Learning for Object Detection arxiv link News Sparse RCNN+DetCo improves from 45.0 AP to 46.5 AP(+1.5) with 3x+ms trai

Enze Xie 234 Dec 18, 2022
Convnet transfer - Code for paper How transferable are features in deep neural networks?

How transferable are features in deep neural networks? This repository contains source code necessary to reproduce the results presented in the follow

Jason Yosinski 143 Sep 13, 2022
Zeyuan Chen, Yangchao Wang, Yang Yang and Dong Liu.

Principled S2R Dehazing This repository contains the official implementation for PSD Framework introduced in the following paper: PSD: Principled Synt

zychen 78 Dec 30, 2022
Bayesian Meta-Learning Through Variational Gaussian Processes

vmgp This is the repository of Vivek Myers and Nikhil Sardana for our CS 330 final project, Bayesian Meta-Learning Through Variational Gaussian Proces

Vivek Myers 2 Nov 17, 2022
TipToiDog - Tip Toi Dog With Python

TipToiDog Was ist dieses Projekt? Meine 5-jährige Tochter spielt sehr gerne das

1 Feb 07, 2022
FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing

FairEdit Relevent Publication FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing

5 Feb 04, 2022
Alpha-Zero - Telegram Group Manager Bot Written In Python Using Pyrogram

✨ Alpha Zero Bot ✨ Telegram Group Manager Bot + Userbot Written In Python Using

1 Feb 17, 2022
Discovering and Achieving Goals via World Models

Discovering and Achieving Goals via World Models [Project Website] [Benchmark Code] [Video (2min)] [Oral Talk (13min)] [Paper] Russell Mendonca*1, Ole

Oleg Rybkin 71 Dec 22, 2022
Open AI's Python library

OpenAI Python Library The OpenAI Python library provides convenient access to the OpenAI API from applications written in the Python language. It incl

Pavan Ananth Sharma 3 Jul 10, 2022
A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen.

Master Release Pytorch - Py + Nim A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen. Because Nim compiles to C+

Giovanni Petrantoni 425 Dec 22, 2022
Build a medical knowledge graph based on Unified Language Medical System (UMLS)

UMLS-Graph Build a medical knowledge graph based on Unified Language Medical System (UMLS) Requisite Install MySQL Server 5.6 and import UMLS data int

Donghua Chen 6 Dec 25, 2022
PyMove is a Python library to simplify queries and visualization of trajectories and other spatial-temporal data

Use PyMove and go much further Information Package Status License Python Version Platforms Build Status PyPi version PyPi Downloads Conda version Cond

Insight Data Science Lab 64 Nov 15, 2022
Code for the paper "Balancing Training for Multilingual Neural Machine Translation, ACL 2020"

Balancing Training for Multilingual Neural Machine Translation Implementation of the paper Balancing Training for Multilingual Neural Machine Translat

Xinyi Wang 21 May 18, 2022
Colar: Effective and Efficient Online Action Detection by Consulting Exemplars, CVPR 2022.

Colar: Effective and Efficient Online Action Detection by Consulting Exemplars This repository is the official implementation of Colar. In this work,

LeYang 246 Dec 13, 2022
Sequential Model-based Algorithm Configuration

SMAC v3 Project Copyright (C) 2016-2018 AutoML Group Attention: This package is a reimplementation of the original SMAC tool (see reference below). Ho

AutoML-Freiburg-Hannover 778 Jan 05, 2023