An original implementation of "MetaICL Learning to Learn In Context" by Sewon Min, Mike Lewis, Luke Zettlemoyer and Hannaneh Hajishirzi

Related tags

Deep LearningMetaICL
Overview

MetaICL: Learning to Learn In Context

This includes an original implementation of "MetaICL: Learning to Learn In Context" by Sewon Min, Mike Lewis, Luke Zettlemoyer and Hannaneh Hajishirzi.

Check out our demo at qa.cs.washington.edu:2021!

This README is mainly for how to reproduce MetaICL and Channel MetaICL in the paper, but also describe how to reproduce our baselines, including Multi-task zero-shot and various raw LM methods. All methods used in the paper are available in this repo (please see the below table).

For any questions about the paper or the code, please contact the first author (email) or leave issues.

If you find our code or paper useful, please cite the paper:

@article{ min2021metaicl,
    title={ Meta{ICL}: Learning to Learn In Context },
    author={ Min, Sewon and Lewis, Mike and Zettlemoyer, Luke and Hajishirzi, Hannaneh },
    journal={ arXiv preprint },
    year={ 2021 }
}

Content

  1. Installation
  2. Quick Start
  3. Data
  4. Training
  5. Inference
  6. Downloading Checkpoints

Installation

These are installation guidelines mainly for running baselines. Requirements for data are provided here. All codes are tested with Python 3.8.

pip install torch==1.9.0
pip install git+https://github.com/huggingface/[email protected]

To train the model, we use an 8-bit optimizer and mixed precision that significantly save the memory. To use them, please use the following commands (but skip if you will run inference only using released checkpoints):

# For 8-bit optimization: see https://github.com/facebookresearch/bitsandbytes for more details
pip install -i https://test.pypi.org/simple/ bitsandbytes-cuda102 # modify based on your CUDA version

# For mixed precision training: see https://github.com/NVIDIA/apex for more details
# make sure your nvcc is working (e.g. `nvcc --version`)
cd .. # move outside of this project directory
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
cd ../MetaICL # come back to this project directory

Quick Start

This is an example with a dataset financial_phrasebank.

First, prepare a list of training examples

train_data = [{"input": INPUT_1, "output": OUTPUT_1},
              {"input": INPUT_2, "output": OUTPUT_2},
              ...
              {"input": INPUT_K, "output": OUTPUT_K}]

If you prefer, you can download our training data by running the command python -m utils.download_data --demo_data then loading the downloaded file as follows.

with open("data/financial_phrasebank/financial_phrasebank_16_100_train.jsonl", "r") as f:
    train_data = []
    for line in f:
        train_data.append(json.loads(line))

Then, you can use our model as follows.

from metaicl.data import MetaICLData
from metaicl.model import MetaICLModel

# Load the model
data = MetaICLData(method="channel", max_length=1024, max_length_per_example=256)
model = MetaICLModel()
model.load("channel-metaicl")
model.cuda()
model.eval()

# Make a prediction for `input1`
input1 = "Both operating profit and net sales for the six-month period increased as compared to the corresponding period in 2007."
data.tensorize(train_data, [input1], options=["positive", "neutral", "negative"])
prediction = model.do_predict(data)[0]
print (prediction) # positive

# Make another prediction for `input2`
input2 = "The deal will have no significant effect on the acquiring company's equity ratio."
data.tensorize(train_data, [input2], options=["positive", "neutral", "negative"])
prediction = model.do_predict(data)[0]
print (prediction) # neutral

Data

As described in the paper, we use a collection of 142 tasks taken from CrossFit and UnifiedQA. We experiment with seven different settings, where there is no overlap in meta-training and target tasks. Download/Preprocessing guidelines are here.

Setting name alias (for command) # meta-train tasks # meta-train examples # target tasks
High Resource → Low Resource hr_to_lr 61 819,200 26
Classification → Classification class_to_class 43 384,022 20
Non-Classification → Classification non_class_to_class 37 368,768 20
QA → QA qa_to_qa 37 486,143 22
Non-QA → QA non_qa_to_qa 33 521,342 22
Non-NLI → NLI non_nli_to_nli 55 463,579 8
Non-Paraphrase Detection → Paraphrase Detection non_paraphrase_to_paraphrase 59 496,106 4

To run experiments for each setting, use "alias (for command)" for commands in the Training section and the Inference section.

All settings above do not use any templates/instructions. If you want to use instruction version as in ablations in the paper, use settings in the following table.

Setting name alias (for command) # instructions / meta-train task # meta-train tasks # meta-train examples # target tasks
High Resource → Low Resource without instructions hr_to_lr_noinst 0 32 492,655 12
High Resource → Low Resource with instructions (1 per task) hr_to_lr_inst 1 32 492,655 12
High Resource → Low Resource with instructions (all) hr_to_lr_inst_all 8.3 32 492,655 12

If you use these data resources, please make sure to cite CrossFit and UnifiedQA.

@inproceedings{ ye2021crossfit,
    title={ {C}ross{F}it: A Few-shot Learning Challenge for Cross-task Generalization in NLP },
    author={ Ye, Qinyuan and Lin, Bill Yuchen and Ren, Xiang },
    booktitle={ EMNLP },
    year={ 2021 }
}
@inproceedings{ khashabi2020unifiedqa,
    title={ {U}nified{QA}: Crossing Format Boundaries With a Single QA System },
    author={ Khashabi, Daniel and Min, Sewon and Khot, Tushar and Sabharwal, Ashish and Tafjord, Oyvind and Clark, Peter and Hajishirzi, Hannaneh },
    booktitle={ Findings of EMNLP },
    year={ 2020 }
}

If you use the instruction version, please make sure to cite the T0 paper.

@article{ sanh2021multitask,
    title={ Multitask Prompted Training Enables Zero-Shot Task Generalization },
    author={ Victor Sanh and Albert Webson and Colin Raffel and Stephen H. Bach and Lintang Sutawika and Zaid Alyafeai and Antoine Chaffin and Arnaud Stiegler and Teven Le Scao and Arun Raja and Manan Dey and M Saiful Bari and Canwen Xu and Urmish Thakker and Shanya Sharma and Eliza Szczechla and Taewoon Kim and Gunjan Chhablani and Nihal Nayak and Debajyoti Datta and Jonathan Chang and Mike Tian-Jian Jiang and Han Wang and Matteo Manica and Sheng Shen and Zheng Xin Yong and Harshit Pandey and Rachel Bawden and Thomas Wang and Trishala Neeraj and Jos Rozen and Abheesht Sharma and Andrea Santilli and Thibault Fevry and Jason Alan Fries and Ryan Teehan and Stella Biderman and Leo Gao and Tali Bers and Thomas Wolf and Alexander M. Rush },
    journal={ arXiv preprint arXiv:2110.08207 },
    year={ 2021 }
}

How to Download and Preprocess

The code is modified from the original CrossFit repo. First, install requirements:

pip install datasets==1.4.0 wget

Warning: we found that datasets==1.4.0 is not compatible with Transformers version we use for training and inference. Please use a separate environement for data preprocessing and model training/inference.

cd preprocess
# preprocess from crossfit
python _build_gym.py --build --n_proc=40 --do_test
python _build_gym.py --build --n_proc=40 --do_train # skip if you won't run training yourself
# preprocess from unifiedqa
python unifiedqa.py --do_train --do_test # skip `--do_train` if you won't run training yourself

By default, preprocessed data is saved at data/.

Process instruction version

The instruction version is for settings using instructions. We use instructions from BigScience PromptSource. First, fetch instructions (prompts) from PromptSource by doing the following.

# assuming you are still inside `preprocess` directory
cd ../.. # go outside of your project directory
git clone https://github.com/bigscience-workshop/promptsource.git
cd promptsource
git checkout 4e67a38d9642bde222cb90e36e8a66fd6e4a861a
mv promptsource ../MetaICL/preprocess/ # move promptsource directory under `preprocess` directory
cd ../MetaICL/preprocess # comte back to `preprocess` directory
pip install pandas jinja2 "pyyaml>=5"

Note that this is a workaround that does not use python-pip to install the promptsource packages because it requires to use python<=3.7, while all other codes in this repo use python 3.8. If promptsource starts supporting python 3.8, please install the package following the guidelines in the original repo.

Then, download the data via:

python _build_gym.py --build --n_proc=20 --do_test --inst
python _build_gym.py --build --n_proc=20 --do_train --inst # skip if you won't run training yourself

Training

First, run the command to tensorize the text data and save them.

python train.py \
  --task $task --k 16384 --test_k 16 --seed 100 --use_demonstrations --method channel \
  --do_tensorize --n_gpu 8 --n_process 40
  • --task: name of the setting, like hr_to_lr, class_to_class, non_class_to_class, etc
  • --k: # of examples per meta-training task
  • --test_k: # of examples to be used at inference
  • --seed: data seed for training data
  • --method: direct / channel
  • --n_gpu: the number of gpus you will use for training
  • --n_process: the number of processed for preprocessing

Then, run the following command to train the model.

python -m torch.distributed.launch --nproc_per_node=8 train.py \
  --task $task --k 16384 --test_k 16 --seed 100 --train_seed 1 --use_demonstrations --method channel --n_gpu 8 \
  --batch_size 1 --lr 1e-05 --fp16 --optimization 8bit-adam --out_dir checkpoints/channel-metaicl/$task
  • --fp16: for mixed precision training
  • --optimization 8bit-adam: for 8-bit approximations for Adam optimizer
  • --batch_size: batch size per GPU; we use 1, so that the global batch size is 8
  • --num_training_steps: number of training steps; 30000 by default
  • --log_file: you can optionally specify this to save logs as a text file

Training takes around 4.5 hours

If you want to train Multi-task zero-shot model that is one of our baselines in the paper, you can use similar commands for both tensorizing and training, but without --use_demonstrations and --test_k. Training takes around 3 hours.

Inference

python test.py --task $task --k 16 --split test --seed 100 --test_batch_size 16 \
    --method {channel|direct} --use_demonstrations \
    --out_dir checkpoints/metaicl/$task \
    --global_step 30000

Instead of specifying --global_step, you can specify --checkpoint for path to the checkpoint if you want to use checkpoint stored in somewhere else (for example, if you have downloaded the released checkpoints and want to use them). You must specify one of checkpoint and global_step.

  • --seed: seed for training data you will use at inference
  • --test_batch_size: batch size for inference; you can use 16 with a 32GB GPU
  • --unseen_domain_only: specify if you would like to run inference on unseen domain only
  • --log_file: Similar to in training, specify the path to the file where you want to save logs

If you want to run inference for Multi-task zero-shot baseline, you can use a similar command but without --use_demonstrations and --k. For this baseline, you can use --test_batch_size 64 with a 32GB GPU.

If you want to run raw LM baselines in the paper, you do not need to specify --checkpoint or --global_step. Instead, specify --do_zeroshot, and then:

  • For 0-shot, run the command --method direct
  • For PMI 0-shot, run the command using --is_null, and then run the command using --use_calibration (for both, with --method direct)
  • For Channel 0-shot, run the command using --method channel
  • For In-context/PMI In-context/Channel In-context, do the same as above except always adding --use_demonstrations

You can use the same out_dir for all raw LM baselines if you are using the same GPT2 model, e.g., checkpoints/raw-gpt2-large

Downloading Checkpoints

You can run the inference script by specifying --checkpoint {model_name}, and the script will automatically download the corresponding checkpoint under the checkpoints/ directory. {model_name} can either be

  • {metaicl|channel-metaicl|multitask-zero|channel-multitask-zero}: corresponding method trained in the hr_to_lr setting
  • {metaicl|channel-metaicl|multitask-zero|channel-multitask-zero}-instruction: corresponding method trained in the hr_to_lr_inst_all setting
  • {metaicl|channel-metaicl|multitask-zero|channel-multitask-zero}/{setting_name}: corresponding method trained in the corresponding setting (for setting_name, see the Table in the data section)

Alternatively, you can download all checkpoints via:

python -m utils.download --checkpoints --setting all --method all

If you want to download one of settings only, specify --setting {setting_name} (using "alias for command" in the setting table above) If you want to download one of methods only, specify --method {method_name} where method_name is one of metaicl, channel-metaicl, multitask-zero, channel-multitask-zero.

Simply reproducing all results in the paper

You can use the following commands (based on a 32GB GPU):

# raw LM zero-shot baselines (0-shot, PMI 0-shot, Channel 0-shot)
bash reproduce.sh {setting_name} {zero|pmi-zero|channel-zero} 100 64

# raw LM in-context baselines (in-context, PMI in-context, Channel in-context)
bash reproduce.sh {setting_name} {ic|pmi-ic|channel-ic} 100,13,21,42,87 16

# Multi-task 0-shot baselines
bash reproduce.sh {setting_name} {multitask-zero|channel-multitask-zero} 100 64

# MetaICL
bash reproduce.sh {setting_name} {metaicl|channel-metaicl} 100,13,21,42,87 16

License

MetaICL is CC-BY-NC 4.0 licensed.

Owner
Meta Research
Meta Research
Llvlir - Low Level Variable Length Intermediate Representation

Low Level Variable Length Intermediate Representation Low Level Variable Length

Michael Clark 2 Jan 24, 2022
TensorFlow port of PyTorch Image Models (timm) - image models with pretrained weights.

TensorFlow-Image-Models Introduction Usage Models Profiling License Introduction TensorfFlow-Image-Models (tfimm) is a collection of image models with

Martins Bruveris 227 Dec 20, 2022
Synthesizing and manipulating 2048x1024 images with conditional GANs

pix2pixHD Project | Youtube | Paper Pytorch implementation of our method for high-resolution (e.g. 2048x1024) photorealistic image-to-image translatio

NVIDIA Corporation 6k Dec 27, 2022
The end-to-end platform for building voice products at scale

Picovoice Made in Vancouver, Canada by Picovoice Picovoice is the end-to-end platform for building voice products on your terms. Unlike Alexa and Goog

Picovoice 318 Jan 07, 2023
ADOP: Approximate Differentiable One-Pixel Point Rendering

ADOP: Approximate Differentiable One-Pixel Point Rendering Abstract: We present a novel point-based, differentiable neural rendering pipeline for scen

Darius Rückert 1.9k Jan 06, 2023
Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation

Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation This paper has been accepted and early accessed

Yun Liu 39 Sep 20, 2022
Simple node deletion tool for onnx.

snd4onnx Simple node deletion tool for onnx. I only test very miscellaneous and limited patterns as a hobby. There are probably a large number of bugs

Katsuya Hyodo 6 May 15, 2022
Public implementation of the Convolutional Motif Kernel Network (CMKN) architecture

CMKN Implementation of the convolutional motif kernel network (CMKN) introduced in Ditz et al., "Convolutional Motif Kernel Network", 2021. Testing Yo

1 Nov 17, 2021
Image classification for projects and researches

This is a tool to help you quickly solve classification problems including: data analysis, training, report results and model explanation.

Nguyễn Trường Lâu 2 Dec 27, 2021
Effective Use of Transformer Networks for Entity Tracking

Effective Use of Transformer Networks for Entity Tracking (EMNLP19) This is a PyTorch implementation of our EMNLP paper on the effectiveness of pre-tr

5 Nov 06, 2021
Simulating an AI playing 2048 using the Expectimax algorithm

2048-expectimax Simulating an AI playing 2048 using the Expectimax algorithm The base game engine uses code from here. The AI player is modeled as a m

Subha Ramesh 2 Jan 31, 2022
[MedIA2021]MIDeepSeg: Minimally Interactive Segmentation of Unseen Objects from Medical Images Using Deep Learning

MIDeepSeg: Minimally Interactive Segmentation of Unseen Objects from Medical Images Using Deep Learning [MedIA or Arxiv] and [Demo] This repository pr

Healthcare Intelligence Laboratory 92 Dec 08, 2022
PyTorch implementation for ComboGAN

ComboGAN This is our ongoing PyTorch implementation for ComboGAN. Code was written by Asha Anoosheh (built upon CycleGAN) [ComboGAN Paper] If you use

Asha Anoosheh 139 Dec 20, 2022
(EI 2022) Controllable Confidence-Based Image Denoising

Image Denoising with Control over Deep Network Hallucination Paper and arXiv preprint -- Our frequency-domain insights derive from SFM and the concept

Images and Visual Representation Laboratory (IVRL) at EPFL 5 Dec 18, 2022
Noise Conditional Score Networks (NeurIPS 2019, Oral)

Generative Modeling by Estimating Gradients of the Data Distribution This repo contains the official implementation for the NeurIPS 2019 paper Generat

451 Dec 26, 2022
An Implicit Function Theorem (IFT) optimizer for bi-level optimizations

iftopt An Implicit Function Theorem (IFT) optimizer for bi-level optimizations. Requirements Python 3.7+ PyTorch 1.x Installation $ pip install git+ht

The Money Shredder Lab 2 Dec 02, 2021
HybVIO visual-inertial odometry and SLAM system

HybVIO A visual-inertial odometry system with an optional SLAM module. This is a research-oriented codebase, which has been published for the purposes

Spectacular AI 320 Jan 03, 2023
JupyterNotebook - C/C++, Javascript, HTML, LaTex, Shell scripts in Jupyter Notebook Also run them on remote computer

JupyterNotebook Read, write and execute C, C++, Javascript, Shell scripts, HTML, LaTex in jupyter notebook, And also execute them on remote computer R

1 Jan 09, 2022
A simple library that implements CLIP guided loss in PyTorch.

pytorch_clip_guided_loss: Pytorch implementation of the CLIP guided loss for Text-To-Image, Image-To-Image, or Image-To-Text generation. A simple libr

Sergei Belousov 74 Dec 26, 2022
Distributing reference energies for SMIRNOFF implementations

Warning: This code is currently experimental and under active development. Is it not yet suitable for distribution or use as reference implementation.

Open Force Field Initiative 1 Dec 07, 2021