An original implementation of "MetaICL Learning to Learn In Context" by Sewon Min, Mike Lewis, Luke Zettlemoyer and Hannaneh Hajishirzi

Related tags

Deep LearningMetaICL
Overview

MetaICL: Learning to Learn In Context

This includes an original implementation of "MetaICL: Learning to Learn In Context" by Sewon Min, Mike Lewis, Luke Zettlemoyer and Hannaneh Hajishirzi.

Check out our demo at qa.cs.washington.edu:2021!

This README is mainly for how to reproduce MetaICL and Channel MetaICL in the paper, but also describe how to reproduce our baselines, including Multi-task zero-shot and various raw LM methods. All methods used in the paper are available in this repo (please see the below table).

For any questions about the paper or the code, please contact the first author (email) or leave issues.

If you find our code or paper useful, please cite the paper:

@article{ min2021metaicl,
    title={ Meta{ICL}: Learning to Learn In Context },
    author={ Min, Sewon and Lewis, Mike and Zettlemoyer, Luke and Hajishirzi, Hannaneh },
    journal={ arXiv preprint },
    year={ 2021 }
}

Content

  1. Installation
  2. Quick Start
  3. Data
  4. Training
  5. Inference
  6. Downloading Checkpoints

Installation

These are installation guidelines mainly for running baselines. Requirements for data are provided here. All codes are tested with Python 3.8.

pip install torch==1.9.0
pip install git+https://github.com/huggingface/[email protected]

To train the model, we use an 8-bit optimizer and mixed precision that significantly save the memory. To use them, please use the following commands (but skip if you will run inference only using released checkpoints):

# For 8-bit optimization: see https://github.com/facebookresearch/bitsandbytes for more details
pip install -i https://test.pypi.org/simple/ bitsandbytes-cuda102 # modify based on your CUDA version

# For mixed precision training: see https://github.com/NVIDIA/apex for more details
# make sure your nvcc is working (e.g. `nvcc --version`)
cd .. # move outside of this project directory
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
cd ../MetaICL # come back to this project directory

Quick Start

This is an example with a dataset financial_phrasebank.

First, prepare a list of training examples

train_data = [{"input": INPUT_1, "output": OUTPUT_1},
              {"input": INPUT_2, "output": OUTPUT_2},
              ...
              {"input": INPUT_K, "output": OUTPUT_K}]

If you prefer, you can download our training data by running the command python -m utils.download_data --demo_data then loading the downloaded file as follows.

with open("data/financial_phrasebank/financial_phrasebank_16_100_train.jsonl", "r") as f:
    train_data = []
    for line in f:
        train_data.append(json.loads(line))

Then, you can use our model as follows.

from metaicl.data import MetaICLData
from metaicl.model import MetaICLModel

# Load the model
data = MetaICLData(method="channel", max_length=1024, max_length_per_example=256)
model = MetaICLModel()
model.load("channel-metaicl")
model.cuda()
model.eval()

# Make a prediction for `input1`
input1 = "Both operating profit and net sales for the six-month period increased as compared to the corresponding period in 2007."
data.tensorize(train_data, [input1], options=["positive", "neutral", "negative"])
prediction = model.do_predict(data)[0]
print (prediction) # positive

# Make another prediction for `input2`
input2 = "The deal will have no significant effect on the acquiring company's equity ratio."
data.tensorize(train_data, [input2], options=["positive", "neutral", "negative"])
prediction = model.do_predict(data)[0]
print (prediction) # neutral

Data

As described in the paper, we use a collection of 142 tasks taken from CrossFit and UnifiedQA. We experiment with seven different settings, where there is no overlap in meta-training and target tasks. Download/Preprocessing guidelines are here.

Setting name alias (for command) # meta-train tasks # meta-train examples # target tasks
High Resource → Low Resource hr_to_lr 61 819,200 26
Classification → Classification class_to_class 43 384,022 20
Non-Classification → Classification non_class_to_class 37 368,768 20
QA → QA qa_to_qa 37 486,143 22
Non-QA → QA non_qa_to_qa 33 521,342 22
Non-NLI → NLI non_nli_to_nli 55 463,579 8
Non-Paraphrase Detection → Paraphrase Detection non_paraphrase_to_paraphrase 59 496,106 4

To run experiments for each setting, use "alias (for command)" for commands in the Training section and the Inference section.

All settings above do not use any templates/instructions. If you want to use instruction version as in ablations in the paper, use settings in the following table.

Setting name alias (for command) # instructions / meta-train task # meta-train tasks # meta-train examples # target tasks
High Resource → Low Resource without instructions hr_to_lr_noinst 0 32 492,655 12
High Resource → Low Resource with instructions (1 per task) hr_to_lr_inst 1 32 492,655 12
High Resource → Low Resource with instructions (all) hr_to_lr_inst_all 8.3 32 492,655 12

If you use these data resources, please make sure to cite CrossFit and UnifiedQA.

@inproceedings{ ye2021crossfit,
    title={ {C}ross{F}it: A Few-shot Learning Challenge for Cross-task Generalization in NLP },
    author={ Ye, Qinyuan and Lin, Bill Yuchen and Ren, Xiang },
    booktitle={ EMNLP },
    year={ 2021 }
}
@inproceedings{ khashabi2020unifiedqa,
    title={ {U}nified{QA}: Crossing Format Boundaries With a Single QA System },
    author={ Khashabi, Daniel and Min, Sewon and Khot, Tushar and Sabharwal, Ashish and Tafjord, Oyvind and Clark, Peter and Hajishirzi, Hannaneh },
    booktitle={ Findings of EMNLP },
    year={ 2020 }
}

If you use the instruction version, please make sure to cite the T0 paper.

@article{ sanh2021multitask,
    title={ Multitask Prompted Training Enables Zero-Shot Task Generalization },
    author={ Victor Sanh and Albert Webson and Colin Raffel and Stephen H. Bach and Lintang Sutawika and Zaid Alyafeai and Antoine Chaffin and Arnaud Stiegler and Teven Le Scao and Arun Raja and Manan Dey and M Saiful Bari and Canwen Xu and Urmish Thakker and Shanya Sharma and Eliza Szczechla and Taewoon Kim and Gunjan Chhablani and Nihal Nayak and Debajyoti Datta and Jonathan Chang and Mike Tian-Jian Jiang and Han Wang and Matteo Manica and Sheng Shen and Zheng Xin Yong and Harshit Pandey and Rachel Bawden and Thomas Wang and Trishala Neeraj and Jos Rozen and Abheesht Sharma and Andrea Santilli and Thibault Fevry and Jason Alan Fries and Ryan Teehan and Stella Biderman and Leo Gao and Tali Bers and Thomas Wolf and Alexander M. Rush },
    journal={ arXiv preprint arXiv:2110.08207 },
    year={ 2021 }
}

How to Download and Preprocess

The code is modified from the original CrossFit repo. First, install requirements:

pip install datasets==1.4.0 wget

Warning: we found that datasets==1.4.0 is not compatible with Transformers version we use for training and inference. Please use a separate environement for data preprocessing and model training/inference.

cd preprocess
# preprocess from crossfit
python _build_gym.py --build --n_proc=40 --do_test
python _build_gym.py --build --n_proc=40 --do_train # skip if you won't run training yourself
# preprocess from unifiedqa
python unifiedqa.py --do_train --do_test # skip `--do_train` if you won't run training yourself

By default, preprocessed data is saved at data/.

Process instruction version

The instruction version is for settings using instructions. We use instructions from BigScience PromptSource. First, fetch instructions (prompts) from PromptSource by doing the following.

# assuming you are still inside `preprocess` directory
cd ../.. # go outside of your project directory
git clone https://github.com/bigscience-workshop/promptsource.git
cd promptsource
git checkout 4e67a38d9642bde222cb90e36e8a66fd6e4a861a
mv promptsource ../MetaICL/preprocess/ # move promptsource directory under `preprocess` directory
cd ../MetaICL/preprocess # comte back to `preprocess` directory
pip install pandas jinja2 "pyyaml>=5"

Note that this is a workaround that does not use python-pip to install the promptsource packages because it requires to use python<=3.7, while all other codes in this repo use python 3.8. If promptsource starts supporting python 3.8, please install the package following the guidelines in the original repo.

Then, download the data via:

python _build_gym.py --build --n_proc=20 --do_test --inst
python _build_gym.py --build --n_proc=20 --do_train --inst # skip if you won't run training yourself

Training

First, run the command to tensorize the text data and save them.

python train.py \
  --task $task --k 16384 --test_k 16 --seed 100 --use_demonstrations --method channel \
  --do_tensorize --n_gpu 8 --n_process 40
  • --task: name of the setting, like hr_to_lr, class_to_class, non_class_to_class, etc
  • --k: # of examples per meta-training task
  • --test_k: # of examples to be used at inference
  • --seed: data seed for training data
  • --method: direct / channel
  • --n_gpu: the number of gpus you will use for training
  • --n_process: the number of processed for preprocessing

Then, run the following command to train the model.

python -m torch.distributed.launch --nproc_per_node=8 train.py \
  --task $task --k 16384 --test_k 16 --seed 100 --train_seed 1 --use_demonstrations --method channel --n_gpu 8 \
  --batch_size 1 --lr 1e-05 --fp16 --optimization 8bit-adam --out_dir checkpoints/channel-metaicl/$task
  • --fp16: for mixed precision training
  • --optimization 8bit-adam: for 8-bit approximations for Adam optimizer
  • --batch_size: batch size per GPU; we use 1, so that the global batch size is 8
  • --num_training_steps: number of training steps; 30000 by default
  • --log_file: you can optionally specify this to save logs as a text file

Training takes around 4.5 hours

If you want to train Multi-task zero-shot model that is one of our baselines in the paper, you can use similar commands for both tensorizing and training, but without --use_demonstrations and --test_k. Training takes around 3 hours.

Inference

python test.py --task $task --k 16 --split test --seed 100 --test_batch_size 16 \
    --method {channel|direct} --use_demonstrations \
    --out_dir checkpoints/metaicl/$task \
    --global_step 30000

Instead of specifying --global_step, you can specify --checkpoint for path to the checkpoint if you want to use checkpoint stored in somewhere else (for example, if you have downloaded the released checkpoints and want to use them). You must specify one of checkpoint and global_step.

  • --seed: seed for training data you will use at inference
  • --test_batch_size: batch size for inference; you can use 16 with a 32GB GPU
  • --unseen_domain_only: specify if you would like to run inference on unseen domain only
  • --log_file: Similar to in training, specify the path to the file where you want to save logs

If you want to run inference for Multi-task zero-shot baseline, you can use a similar command but without --use_demonstrations and --k. For this baseline, you can use --test_batch_size 64 with a 32GB GPU.

If you want to run raw LM baselines in the paper, you do not need to specify --checkpoint or --global_step. Instead, specify --do_zeroshot, and then:

  • For 0-shot, run the command --method direct
  • For PMI 0-shot, run the command using --is_null, and then run the command using --use_calibration (for both, with --method direct)
  • For Channel 0-shot, run the command using --method channel
  • For In-context/PMI In-context/Channel In-context, do the same as above except always adding --use_demonstrations

You can use the same out_dir for all raw LM baselines if you are using the same GPT2 model, e.g., checkpoints/raw-gpt2-large

Downloading Checkpoints

You can run the inference script by specifying --checkpoint {model_name}, and the script will automatically download the corresponding checkpoint under the checkpoints/ directory. {model_name} can either be

  • {metaicl|channel-metaicl|multitask-zero|channel-multitask-zero}: corresponding method trained in the hr_to_lr setting
  • {metaicl|channel-metaicl|multitask-zero|channel-multitask-zero}-instruction: corresponding method trained in the hr_to_lr_inst_all setting
  • {metaicl|channel-metaicl|multitask-zero|channel-multitask-zero}/{setting_name}: corresponding method trained in the corresponding setting (for setting_name, see the Table in the data section)

Alternatively, you can download all checkpoints via:

python -m utils.download --checkpoints --setting all --method all

If you want to download one of settings only, specify --setting {setting_name} (using "alias for command" in the setting table above) If you want to download one of methods only, specify --method {method_name} where method_name is one of metaicl, channel-metaicl, multitask-zero, channel-multitask-zero.

Simply reproducing all results in the paper

You can use the following commands (based on a 32GB GPU):

# raw LM zero-shot baselines (0-shot, PMI 0-shot, Channel 0-shot)
bash reproduce.sh {setting_name} {zero|pmi-zero|channel-zero} 100 64

# raw LM in-context baselines (in-context, PMI in-context, Channel in-context)
bash reproduce.sh {setting_name} {ic|pmi-ic|channel-ic} 100,13,21,42,87 16

# Multi-task 0-shot baselines
bash reproduce.sh {setting_name} {multitask-zero|channel-multitask-zero} 100 64

# MetaICL
bash reproduce.sh {setting_name} {metaicl|channel-metaicl} 100,13,21,42,87 16

License

MetaICL is CC-BY-NC 4.0 licensed.

Owner
Meta Research
Meta Research
Hydra Lightning Template for Structured Configs

Hydra Lightning Template for Structured Configs Template for creating projects with pytorch-lightning and hydra. How to use this template? Create your

Model-driven Machine Learning 4 Jul 19, 2022
This is the paddle code for SeBoW(Self-Born wiring for neural trees), a kind of neural tree born form a large search space

SeBoW: Self-Born Wiring for neural trees(PaddlePaddle version) This is the paddle code for SeBoW(Self-Born wiring for neural trees), a kind of neural

HollyLee 13 Dec 08, 2022
Provide partial dates and retain the date precision through processing

Prefix date parser This is a helper class to parse dates with varied degrees of precision. For example, a data source might state a date as 2001, 2001

Friedrich Lindenberg 13 Dec 14, 2022
Segment axon and myelin from microscopy data using deep learning

Segment axon and myelin from microscopy data using deep learning. Written in Python. Using the TensorFlow framework. Based on a convolutional neural network architecture. Pixels are classified as eit

NeuroPoly 103 Nov 29, 2022
HAR-stacked-residual-bidir-LSTMs - Deep stacked residual bidirectional LSTMs for HAR

HAR-stacked-residual-bidir-LSTM The project is based on this repository which is presented as a tutorial. It consists of Human Activity Recognition (H

Guillaume Chevalier 287 Dec 27, 2022
Range Image-based LiDAR Localization for Autonomous Vehicles Using Mesh Maps

Range Image-based 3D LiDAR Localization This repo contains the code for our ICRA2021 paper: Range Image-based LiDAR Localization for Autonomous Vehicl

Photogrammetry & Robotics Bonn 208 Dec 15, 2022
A curated list and survey of awesome Vision Transformers.

English | 简体中文 A curated list and survey of awesome Vision Transformers. You can use mind mapping software to open the mind mapping source file. You c

OpenMMLab 281 Dec 21, 2022
Code for paper: Towards Tokenized Human Dynamics Representation

Video Tokneization Codebase for video tokenization, based on our paper Towards Tokenized Human Dynamics Representation. Prerequisites (tested under Py

Kenneth Li 20 May 31, 2022
v objective diffusion inference code for PyTorch.

v-diffusion-pytorch v objective diffusion inference code for PyTorch, by Katherine Crowson (@RiversHaveWings) and Chainbreakers AI (@jd_pressman). The

Katherine Crowson 635 Dec 30, 2022
Building blocks for uncertainty-aware cycle consistency presented at NeurIPS'21.

UncertaintyAwareCycleConsistency This repository provides the building blocks and the API for the work presented in the NeurIPS'21 paper Robustness vi

EML Tübingen 19 Dec 12, 2022
这是一个yolo3-tf2的源码,可以用于训练自己的模型。

YOLOV3:You Only Look Once目标检测模型在Tensorflow2当中的实现 目录 性能情况 Performance 所需环境 Environment 文件下载 Download 训练步骤 How2train 预测步骤 How2predict 评估步骤 How2eval 参考资料

Bubbliiiing 68 Dec 21, 2022
Tensorflow implementation of Swin Transformer model.

Swin Transformer (Tensorflow) Tensorflow reimplementation of Swin Transformer model. Based on Official Pytorch implementation. Requirements tensorflow

167 Jan 08, 2023
Simple-Image-Classification - Simple Image Classification Code (PyTorch)

Simple-Image-Classification Simple Image Classification Code (PyTorch) Yechan Kim This repository contains: Python3 / Pytorch code for multi-class ima

Yechan Kim 8 Oct 29, 2022
A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch

This repository holds NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pytorch. Some of the code here will be included in upstream Pytorch eventually. The intenti

NVIDIA Corporation 6.9k Jan 03, 2023
Medical Insurance Cost Prediction using Machine earning

Medical-Insurance-Cost-Prediction-using-Machine-learning - Here in this project, I will use regression analysis to predict medical insurance cost for people in different regions, and based on several

1 Dec 27, 2021
Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition in CVPR19

2s-AGCN Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition in CVPR19 Note PyTorch version should be 0.3! For PyTor

LShi 547 Dec 26, 2022
Pytorch re-implementation of Paper: SwinTextSpotter: Scene Text Spotting via Better Synergy between Text Detection and Text Recognition (CVPR 2022)

SwinTextSpotter This is the pytorch implementation of Paper: SwinTextSpotter: Scene Text Spotting via Better Synergy between Text Detection and Text R

mxin262 183 Jan 03, 2023
HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset (ICCV 2021)

Code for HDR Video Reconstruction HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset (ICCV 2021) Guanying Chen, Cha

Guanying Chen 64 Nov 19, 2022
An End-to-End Machine Learning Library to Optimize AUC (AUROC, AUPRC).

Logo by Zhuoning Yuan LibAUC: A Machine Learning Library for AUC Optimization Website | Updates | Installation | Tutorial | Research | Github LibAUC a

Optimization for AI 176 Jan 07, 2023
EXplainable Artificial Intelligence (XAI)

EXplainable Artificial Intelligence (XAI) This repository includes the codes for different projects on eXplainable Artificial Intelligence (XAI) by th

4 Nov 28, 2022