[NeurIPS 2021] Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data

Overview

Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data (NeurIPS 2021)

teaser

This repository will provide the official PyTorch implementation for the following paper:

Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data
Liming Jiang, Bo Dai, Wayne Wu and Chen Change Loy
In NeurIPS 2021.
Project Page | Paper | Poster | Slides | YouTube Demo

Abstract: Generative adversarial networks (GANs) typically require ample data for training in order to synthesize high-fidelity images. Recent studies have shown that training GANs with limited data remains formidable due to discriminator overfitting, the underlying cause that impedes the generator's convergence. This paper introduces a novel strategy called Adaptive Pseudo Augmentation (APA) to encourage healthy competition between the generator and the discriminator. As an alternative method to existing approaches that rely on standard data augmentations or model regularization, APA alleviates overfitting by employing the generator itself to augment the real data distribution with generated images, which deceives the discriminator adaptively. Extensive experiments demonstrate the effectiveness of APA in improving synthesis quality in the low-data regime. We provide a theoretical analysis to examine the convergence and rationality of our new training strategy. APA is simple and effective. It can be added seamlessly to powerful contemporary GANs, such as StyleGAN2, with negligible computational cost.

convergence_demo.mp4

Updates

  • [09/2021] The paper of APA is accepted by NeurIPS 2021.

Code Release Date

Our code will be made publicly available by the end of this month (November 2021). Please stay tuned.

Results

Effectiveness on Various Datasets

effectonsg2

Effectiveness Given Different Data Amounts

ffhqdiffamount

Overfitting and Convergence Analysis

overfitsg2apa

Comparison with Other State-of-the-Art Solutions

compare

Higher-Resolution Examples (1024 × 1024) on FFHQ-5k (~7% data)

1024

Citation

If you find this work useful for your research, please cite our paper:

@inproceedings{jiang2021DeceiveD,
  title={{Deceive D: Adaptive Pseudo Augmentation} for {GAN} Training with Limited Data},
  author={Jiang, Liming and Dai, Bo and Wu, Wayne and Loy, Chen Change},
  booktitle={NeurIPS},
  year={2021}
}

License

Copyright (c) 2021. All rights reserved.

Owner
Liming Jiang
Ph.D. student, [email protected]
Liming Jiang
The first public PyTorch implementation of Attentive Recurrent Comparators

arc-pytorch PyTorch implementation of Attentive Recurrent Comparators by Shyam et al. A blog explaining Attentive Recurrent Comparators Visualizing At

Sanyam Agarwal 150 Oct 14, 2022
Link prediction using Multiple Order Local Information (MOLI)

Understanding the network formation pattern for better link prediction Authors: [e

Wu Lab 0 Oct 18, 2021
FAIR's research platform for object detection research, implementing popular algorithms like Mask R-CNN and RetinaNet.

Detectron is deprecated. Please see detectron2, a ground-up rewrite of Detectron in PyTorch. Detectron Detectron is Facebook AI Research's software sy

Facebook Research 25.5k Jan 07, 2023
Gradient representations in ReLU networks as similarity functions

Gradient representations in ReLU networks as similarity functions by Dániel Rácz and Bálint Daróczy. This repo contains the python code related to our

1 Oct 08, 2021
Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning.

xTune Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning. Environment DockerFile: dancingsoul/pytorch:xTune Install the f

Bo Zheng 42 Dec 09, 2022
(ICCV 2021) Official code of "Dressing in Order: Recurrent Person Image Generation for Pose Transfer, Virtual Try-on and Outfit Editing."

Dressing in Order (DiOr) 👚 [Paper] 👖 [Webpage] 👗 [Running this code] The official implementation of "Dressing in Order: Recurrent Person Image Gene

Aiyu Cui 277 Dec 28, 2022
Using Streamlit to host a multi-page tool with model specs and classification metrics, while also accepting user input values for prediction.

Predicitng_viability Using Streamlit to host a multi-page tool with model specs and classification metrics, while also accepting user input values for

Gopalika Sharma 1 Nov 08, 2021
Predicting Tweet Sentiment Maching Learning and streamlit

Predicting-Tweet-Sentiment-Maching-Learning-and-streamlit (I prefere using Visual Studio Code ) Open the folder in VS Code Run the first cell in requi

1 Nov 20, 2021
Python code to generate art with Generative Adversarial Network

GAN_Canvas_Maker Generating Art using Generative Adversarial Network (GAN) Python code to generate art with Generative Adversarial Network: https://to

Jonny Banana 10 Aug 22, 2022
All materials of Cassandra Event, Udyam'22

Cassandra 2022 Workspace Workshop Materials Workshop-1 Workshop-2 Workshop-3 Workshop-4 Assignments Assignment-1 Assignment-2 Assignment-3 Resources P

36 Dec 31, 2022
TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation

TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation Zhaoyun Yin, Pichao Wang, Fan Wang, Xianzhe Xu, Hanling Zhang, Hao Li

DamoCV 25 Dec 16, 2022
Lenia - Mathematical Life Forms

For full version list, see Timeline in Lenia portal [2020-10-13] Update Python version with multi-kernel and multi-channel extensions (v3.4 LeniaNDK.p

Bert Chan 3.1k Dec 28, 2022
Tianshou - An elegant PyTorch deep reinforcement learning library.

Tianshou (天授) is a reinforcement learning platform based on pure PyTorch. Unlike existing reinforcement learning libraries, which are mainly based on

Tsinghua Machine Learning Group 5.5k Jan 05, 2023
An energy estimator for eyeriss-like DNN hardware accelerator

Energy-Estimator-for-Eyeriss-like-Architecture- An energy estimator for eyeriss-like DNN hardware accelerator This is an energy estimator for eyeriss-

HEXIN BAO 2 Mar 26, 2022
This project hosts the code for implementing the ISAL algorithm for object detection and image classification

Influence Selection for Active Learning (ISAL) This project hosts the code for implementing the ISAL algorithm for object detection and image classifi

25 Sep 11, 2022
Local Similarity Pattern and Cost Self-Reassembling for Deep Stereo Matching Networks

Local Similarity Pattern and Cost Self-Reassembling for Deep Stereo Matching Networks Contributions A novel pairwise feature LSP to extract structural

31 Dec 06, 2022
Conformer: Local Features Coupling Global Representations for Visual Recognition

Conformer: Local Features Coupling Global Representations for Visual Recognition (arxiv) This repository is built upon DeiT and timm Usage First, inst

Zhiliang Peng 378 Jan 08, 2023
chen2020iros: Learning an Overlap-based Observation Model for 3D LiDAR Localization.

Overlap-based 3D LiDAR Monte Carlo Localization This repo contains the code for our IROS2020 paper: Learning an Overlap-based Observation Model for 3D

Photogrammetry & Robotics Bonn 219 Dec 15, 2022
PatrickStar enables Larger, Faster, Greener Pretrained Models for NLP. Democratize AI for everyone.

PatrickStar: Parallel Training of Large Language Models via a Chunk-based Memory Management Meeting PatrickStar Pre-Trained Models (PTM) are becoming

Tencent 633 Dec 28, 2022
PyTorch implementation of HDN(Homography Decomposition Networks) for planar object tracking

Homography Decomposition Networks for Planar Object Tracking This project is the offical PyTorch implementation of HDN(Homography Decomposition Networ

CaptainHook 48 Dec 15, 2022