Code and data of the Fine-Grained R2R Dataset proposed in paper Sub-Instruction Aware Vision-and-Language Navigation

Overview

Fine-Grained R2R

Code and data of the Fine-Grained R2R Dataset proposed in the EMNLP2020 paper Sub-Instruction Aware Vision-and-Language Navigation.

Code of the navigator will be released soon.

This dataset enriches the benchmark Room-to-Room (R2R) dataset by dividing the instructions into sub-instructions and pairing each of those with their corresponding viewpoints in the path.

  • The copyright resides with the authors of the paper Sub-Instruction Aware Vision-and-Language Navigation.
  • This dataset is build upon the Room-to-Room (R2R) dataset, we refer the readers to its repository for more details.

Data

The Fine-Grained R2R data, which enriches the R2R dataset with sub-instructions and their corresponding paths. The overall instruction and trajectory of each sample remains the same.

  • For paths in the train, the validation seen and the validation unseen splits, we add two new entries:

    • new_instructions: A list of sub-instructions produced by the Chunking Function from the complete instructions. You can use import ast and ast.literal_eval() to read it a list.
    • chunk_view: A list of sub-paths corresponding to the sub-instructions, where each number in the list is an index of a viewpoint in the ground-truth path. The index starts at 1.
  • Some sub-instructions which refer to camera rotation or a STOP action could match to a single viewpoint.

  • For the test unseen split, we only provide the sub-instructions but not the sub-paths.

Source

The code of the proposed Chunking Function for generating sub-instructions.

  • Install the StanfordNLP package (v0.1.2 in our experiment) and download the English models for the neural pipeline.

  • Run make_subinstr.py to generate data with sub-instructions from the original R2R data.

  • The generated files had been sent to the Amazon Mechanical Turk (AMT) for annotating the sub-paths.

Reference

If you use or dicsuss the Fine-Grained R2R dataset in your work, please cite our paper:

@article{hong2020sub,
  title={Sub-Instruction Aware Vision-and-Language Navigation},
  author={Hong, Yicong and Rodriguez-Opazo, Cristian and Wu, Qi and Gould, Stephen},
  journal={arXiv preprint arXiv:2004.02707},
  year={2020}
}

Contact

If you have any question regarding the dataset or publication, please create an issue in this repository or email to [email protected].

Owner
YicongHong
I don't even know where is the end of our universe, how am I suppose to know that?
YicongHong
Trainable Bilateral Filter Layer (PyTorch)

Trainable Bilateral Filter Layer (PyTorch) This repository contains our GPU-accelerated trainable bilateral filter layer (three spatial and one range

FabianWagner 26 Dec 25, 2022
Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)

Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)

105 Nov 07, 2022
Code for ViTAS_Vision Transformer Architecture Search

Vision Transformer Architecture Search This repository open source the code for ViTAS: Vision Transformer Architecture Search. ViTAS aims to search fo

46 Dec 17, 2022
This repository is the official implementation of Open Rule Induction. This paper has been accepted to NeurIPS 2021.

Open Rule Induction This repository is the official implementation of Open Rule Induction. This paper has been accepted to NeurIPS 2021. Abstract Rule

Xingran Chen 16 Nov 14, 2022
Understanding and Improving Encoder Layer Fusion in Sequence-to-Sequence Learning (ICLR 2021)

Understanding and Improving Encoder Layer Fusion in Sequence-to-Sequence Learning (ICLR 2021) Citation Please cite as: @inproceedings{liu2020understan

Sunbow Liu 22 Nov 25, 2022
Official implementation of the NRNS paper: No RL, No Simulation: Learning to Navigate without Navigating

No RL No Simulation (NRNS) Official implementation of the NRNS paper: No RL, No Simulation: Learning to Navigate without Navigating NRNS is a heriarch

Meera Hahn 20 Nov 29, 2022
Tech Resources for Academic Communities

Free tech resources for faculty, students, researchers, life-long learners, and academic community builders for use in tech based courses, workshops, and hackathons.

Microsoft 2.5k Jan 04, 2023
NVIDIA container runtime

nvidia-container-runtime A modified version of runc adding a custom pre-start hook to all containers. If environment variable NVIDIA_VISIBLE_DEVICES i

NVIDIA Corporation 938 Jan 06, 2023
Skipgram Negative Sampling in PyTorch

PyTorch SGNS Word2Vec's SkipGramNegativeSampling in Python. Yet another but quite general negative sampling loss implemented in PyTorch. It can be use

Jamie J. Seol 287 Dec 14, 2022
Official implementation of EdiTTS: Score-based Editing for Controllable Text-to-Speech

EdiTTS: Score-based Editing for Controllable Text-to-Speech Official implementation of EdiTTS: Score-based Editing for Controllable Text-to-Speech. Au

Neosapience 98 Dec 25, 2022
thundernet ncnn

MMDetection_Lite 基于mmdetection 实现一些轻量级检测模型,安装方式和mmdeteciton相同 voc0712 voc 0712训练 voc2007测试 coco预训练 thundernet_voc_shufflenetv2_1.5 input shape mAP 320

DayBreak 39 Dec 05, 2022
Plover-tapey-tape: an alternative to Plover’s built-in paper tape

plover-tapey-tape plover-tapey-tape is an alternative to Plover’s built-in paper

7 May 29, 2022
This is a Python Module For Encryption, Hashing And Other stuff

EnroCrypt This is a Python Module For Encryption, Hashing And Other Basic Stuff You Need, With Secure Encryption And Strong Salted Hashing You Can Do

5 Sep 15, 2022
The Ludii general game system, developed as part of the ERC-funded Digital Ludeme Project.

The Ludii General Game System Ludii is a general game system being developed as part of the ERC-funded Digital Ludeme Project (DLP). This repository h

Digital Ludeme Project 50 Jan 04, 2023
Unofficial implementation of Fast-SCNN: Fast Semantic Segmentation Network

Fast-SCNN: Fast Semantic Segmentation Network Unofficial implementation of the model architecture of Fast-SCNN. Real-time Semantic Segmentation and mo

Philip Popien 69 Aug 11, 2022
We present a regularized self-labeling approach to improve the generalization and robustness properties of fine-tuning.

Overview This repository provides the implementation for the paper "Improved Regularization and Robustness for Fine-tuning in Neural Networks", which

NEU-StatsML-Research 21 Sep 08, 2022
Calculates JMA (Japan Meteorological Agency) seismic intensity (shindo) scale from acceleration data recorded in NumPy array

shindo.py Calculates JMA (Japan Meteorological Agency) seismic intensity (shindo) scale from acceleration data stored in NumPy array Introduction Japa

RR_Inyo 3 Sep 23, 2022
Final report with code for KAIST Course KSE 801.

Orthogonal collocation is a method for the numerical solution of partial differential equations

Chuanbo HUA 4 Apr 06, 2022
《Deep Single Portrait Image Relighting》(ICCV 2019)

Ratio Image Based Rendering for Deep Single-Image Portrait Relighting [Project Page] This is part of the Deep Portrait Relighting project. If you find

62 Dec 21, 2022
A really easy-to-use and powerful sudoku solver.

SodukuSolver This is a really useful sudoku solver with a Qt gui. USAGE Enter the numbers in and click "RUN"! If you don't want to wait, simply press

Ujhhgtg Teams 11 Jun 02, 2022