TDN: Temporal Difference Networks for Efficient Action Recognition

Overview

TDN: Temporal Difference Networks for Efficient Action Recognition

1

Overview

We release the PyTorch code of the TDN(Temporal Difference Networks). This code is based on the TSN and TSM codebase. The core code to implement the Temporal Difference Module are ops/base_module.py and ops/tdn_net.py.

🔥 [NEW!] We have released the PyTorch code of TDN.

Prerequisites

The code is built with following libraries:

Data Preparation

We have successfully trained TDN on Kinetics400, UCF101, HMDB51, Something-Something-V1 and V2 with this codebase.

  • The processing of Something-Something-V1 & V2 can be summarized into 3 steps:

    1. Extract frames from videos(you can use ffmpeg to get frames from video)
    2. Generate annotations needed for dataloader (" " in annotations) The annotation usually includes train.txt and val.txt. The format of *.txt file is like:
      frames/video_1 num_frames label_1
      frames/video_2 num_frames label_2
      frames/video_3 num_frames label_3
      ...
      frames/video_N num_frames label_N
      
    3. Add the information to ops/dataset_configs.py
  • The processing of Kinetics400 can be summarized into 2 steps:

    1. Generate annotations needed for dataloader (" " in annotations) The annotation usually includes train.txt and val.txt. The format of *.txt file is like:
      frames/video_1.mp4  label_1
      frames/video_2.mp4  label_2
      frames/video_3.mp4  label_3
      ...
      frames/video_N.mp4  label_N
      
    2. Add the information to ops/dataset_configs.py

Model Zoo

Here we provide some off-the-shelf pretrained models. The accuracy might vary a little bit compared to the paper, since the raw video of Kinetics downloaded by users may have some differences.

Something-Something-V1

Model Frames x Crops x Clips Top-1 Top-5 checkpoint
TDN-ResNet50 8x1x1 52.3% 80.6% link
TDN-ResNet50 16x1x1 53.9% 82.1% link

Something-Something-V2

Model Frames x Crops x Clips Top-1 Top-5 checkpoint
TDN-ResNet50 8x1x1 64.0% 88.8% link
TDN-ResNet50 16x1x1 65.3% 89.7% link

Kinetics400

Model Frames x Crops x Clips Top-1 (30 view) Top-5 (30 view) checkpoint
TDN-ResNet50 8x3x10 76.6% 92.8% link
TDN-ResNet50 16x3x10 77.5% 93.2% link
TDN-ResNet101 8x3x10 77.5% 93.6% link
TDN-ResNet101 16x3x10 78.5% 93.9% link

Testing

  • For center crop single clip, the processing of testing can be summarized into 2 steps:
    1. Run the following testing scripts:
      CUDA_VISIBLE_DEVICES=0 python3 test_models_center_crop.py something \
      --archs='resnet50' --weights   --test_segments=8  \
      --test_crops=1 --batch_size=16  --gpus 0 --output_dir  -j 4 --clip_index=1
      
    2. Run the following scripts to get result from the raw score:
      python3 pkl_to_results.py --num_clips 1 --test_crops 1 --output_dir   
      
  • For 3 crops, 10 clips, the processing of testing can be summarized into 2 steps:
    1. Run the following testing scripts for 10 times(clip_index from 0 to 9):
      CUDA_VISIBLE_DEVICES=0 python3 test_models_three_crops.py  kinetics \
      --archs='resnet50' --weights   --test_segments=8 \
      --test_crops=3 --batch_size=16 --full_res --gpus 0 --output_dir   \
      -j 4 --clip_index 
      
    2. Run the following scripts to ensemble the raw score of the 30 views:
      python pkl_to_results.py --num_clips 10 --test_crops 3 --output_dir  
      

Training

This implementation supports multi-gpu, DistributedDataParallel training, which is faster and simpler.

  • For example, to train TDN-ResNet50 on Something-Something-V1 with 8 gpus, you can run:
    python -m torch.distributed.launch --master_port 12347 --nproc_per_node=8 \
                main.py  something  RGB --arch resnet50 --num_segments 8 --gd 20 --lr 0.02 \
                --lr_scheduler step --lr_steps  30 45 55 --epochs 60 --batch-size 16 \
                --wd 5e-4 --dropout 0.5 --consensus_type=avg --eval-freq=1 -j 4 --npb 
    
  • For example, to train TDN-ResNet50 on Kinetics400 with 8 gpus, you can run:
    python -m torch.distributed.launch --master_port 12347 --nproc_per_node=8 \
            main.py  kinetics RGB --arch resnet50 --num_segments 8 --gd 20 --lr 0.02 \
            --lr_scheduler step  --lr_steps 50 75 90 --epochs 100 --batch-size 16 \
            --wd 1e-4 --dropout 0.5 --consensus_type=avg --eval-freq=1 -j 4 --npb 
    

Acknowledgements

We especially thank the contributors of the TSN and TSM codebase for providing helpful code.

License

This repository is released under the Apache-2.0. license as found in the LICENSE file.

Citation

If you think our work is useful, please feel free to cite our paper 😆 :

@article{wang2020tdn,
      title={TDN: Temporal Difference Networks for Efficient Action Recognition}, 
      author={Limin Wang and Zhan Tong and Bin Ji and Gangshan Wu},
      journal={arXiv preprint arXiv:2012.10071},
      year={2020}
}
Owner
Multimedia Computing Group, Nanjing University
Multimedia Computing Group, Nanjing University
PINN Burgers - 1D Burgers equation simulated by PINN

PINN(s): Physics-Informed Neural Network(s) for Burgers equation This is an impl

ShotaDEGUCHI 1 Feb 12, 2022
Starter kit for getting started in the Music Demixing Challenge.

Music Demixing Challenge - Starter Kit 👉 Challenge page This repository is the Music Demixing Challenge Submission template and Starter kit! Clone th

AIcrowd 106 Dec 20, 2022
Functional TensorFlow Implementation of Singular Value Decomposition for paper Fast Graph Learning

tf-fsvd TensorFlow Implementation of Functional Singular Value Decomposition for paper Fast Graph Learning with Unique Optimal Solutions Cite If you f

Sami Abu-El-Haija 14 Nov 25, 2021
KIND: an Italian Multi-Domain Dataset for Named Entity Recognition

KIND (Kessler Italian Named-entities Dataset) KIND is an Italian dataset for Named-Entity Recognition. It contains more than one million tokens with t

Digital Humanities 5 Jun 21, 2022
Wenet STT Python

Wenet STT Python Beta Software Simple Python library, distributed via binary wheels with few direct dependencies, for easily using WeNet models for sp

David Zurow 33 Feb 21, 2022
Code for the paper "Graph Attention Tracking". (CVPR2021)

SiamGAT 1. Environment setup This code has been tested on Ubuntu 16.04, Python 3.5, Pytorch 1.2.0, CUDA 9.0. Please install related libraries before r

122 Dec 24, 2022
Pytorch codes for Feature Transfer Learning for Face Recognition with Under-Represented Data

FTLNet_Pytorch Pytorch codes for Feature Transfer Learning for Face Recognition with Under-Represented Data 1. Introduction This repo is an unofficial

1 Nov 04, 2020
Like ThreeJS but for Python and based on wgpu

pygfx A render engine, inspired by ThreeJS, but for Python and targeting Vulkan/Metal/DX12 (via wgpu). Introduction This is a Python render engine bui

139 Jan 07, 2023
Face Recognition & AI Based Smart Attendance Monitoring System.

In today’s generation, authentication is one of the biggest problems in our society. So, one of the most known techniques used for authentication is h

Sagar Saha 1 Jan 14, 2022
Pytorch implementation AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks

AttnGAN Pytorch implementation for reproducing AttnGAN results in the paper AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative

Tao Xu 1.2k Dec 26, 2022
D²Conv3D: Dynamic Dilated Convolutions for Object Segmentation in Videos

D²Conv3D: Dynamic Dilated Convolutions for Object Segmentation in Videos This repository contains the implementation for "D²Conv3D: Dynamic Dilated Co

17 Oct 20, 2022
CV backbones including GhostNet, TinyNet and TNT, developed by Huawei Noah's Ark Lab.

CV Backbones including GhostNet, TinyNet, TNT (Transformer in Transformer) developed by Huawei Noah's Ark Lab. GhostNet Code TinyNet Code TNT Code Pyr

HUAWEI Noah's Ark Lab 3k Jan 08, 2023
An executor that loads ONNX models and embeds documents using the ONNX runtime.

ONNXEncoder An executor that loads ONNX models and embeds documents using the ONNX runtime. Usage via Docker image (recommended) from jina import Flow

Jina AI 2 Mar 15, 2022
On-device speech-to-index engine powered by deep learning.

On-device speech-to-index engine powered by deep learning.

Picovoice 30 Nov 24, 2022
Implementation of the "PSTNet: Point Spatio-Temporal Convolution on Point Cloud Sequences" paper.

PSTNet: Point Spatio-Temporal Convolution on Point Cloud Sequences Introduction Point cloud sequences are irregular and unordered in the spatial dimen

Hehe Fan 63 Dec 09, 2022
This repository provides the official implementation of 'Learning to ignore: rethinking attention in CNNs' accepted in BMVC 2021.

inverse_attention This repository provides the official implementation of 'Learning to ignore: rethinking attention in CNNs' accepted in BMVC 2021. Le

Firas Laakom 5 Jul 08, 2022
Interpretation of T cell states using reference single-cell atlases

Interpretation of T cell states using reference single-cell atlases ProjecTILs is a computational method to project scRNA-seq data into reference sing

Cancer Systems Immunology Lab 139 Jan 03, 2023
VM3000 Microphones

VM3000-Microphones This project was completed by Ricky Leman under the supervision of Dr Ben Travaglione and Professor Melinda Hodkiewicz as part of t

UWA System Health Lab 0 Jun 04, 2021
The official repository for "Score Transformer: Generating Musical Scores from Note-level Representation" (MMAsia '21)

Score Transformer This is the official repository for "Score Transformer": Score Transformer: Generating Musical Scores from Note-level Representation

22 Dec 22, 2022
The official implementation code of "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction."

PlantStereo This is the official implementation code for the paper "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction".

Wang Qingyu 14 Nov 28, 2022