TDN: Temporal Difference Networks for Efficient Action Recognition

Overview

TDN: Temporal Difference Networks for Efficient Action Recognition

1

Overview

We release the PyTorch code of the TDN(Temporal Difference Networks). This code is based on the TSN and TSM codebase. The core code to implement the Temporal Difference Module are ops/base_module.py and ops/tdn_net.py.

🔥 [NEW!] We have released the PyTorch code of TDN.

Prerequisites

The code is built with following libraries:

Data Preparation

We have successfully trained TDN on Kinetics400, UCF101, HMDB51, Something-Something-V1 and V2 with this codebase.

  • The processing of Something-Something-V1 & V2 can be summarized into 3 steps:

    1. Extract frames from videos(you can use ffmpeg to get frames from video)
    2. Generate annotations needed for dataloader (" " in annotations) The annotation usually includes train.txt and val.txt. The format of *.txt file is like:
      frames/video_1 num_frames label_1
      frames/video_2 num_frames label_2
      frames/video_3 num_frames label_3
      ...
      frames/video_N num_frames label_N
      
    3. Add the information to ops/dataset_configs.py
  • The processing of Kinetics400 can be summarized into 2 steps:

    1. Generate annotations needed for dataloader (" " in annotations) The annotation usually includes train.txt and val.txt. The format of *.txt file is like:
      frames/video_1.mp4  label_1
      frames/video_2.mp4  label_2
      frames/video_3.mp4  label_3
      ...
      frames/video_N.mp4  label_N
      
    2. Add the information to ops/dataset_configs.py

Model Zoo

Here we provide some off-the-shelf pretrained models. The accuracy might vary a little bit compared to the paper, since the raw video of Kinetics downloaded by users may have some differences.

Something-Something-V1

Model Frames x Crops x Clips Top-1 Top-5 checkpoint
TDN-ResNet50 8x1x1 52.3% 80.6% link
TDN-ResNet50 16x1x1 53.9% 82.1% link

Something-Something-V2

Model Frames x Crops x Clips Top-1 Top-5 checkpoint
TDN-ResNet50 8x1x1 64.0% 88.8% link
TDN-ResNet50 16x1x1 65.3% 89.7% link

Kinetics400

Model Frames x Crops x Clips Top-1 (30 view) Top-5 (30 view) checkpoint
TDN-ResNet50 8x3x10 76.6% 92.8% link
TDN-ResNet50 16x3x10 77.5% 93.2% link
TDN-ResNet101 8x3x10 77.5% 93.6% link
TDN-ResNet101 16x3x10 78.5% 93.9% link

Testing

  • For center crop single clip, the processing of testing can be summarized into 2 steps:
    1. Run the following testing scripts:
      CUDA_VISIBLE_DEVICES=0 python3 test_models_center_crop.py something \
      --archs='resnet50' --weights   --test_segments=8  \
      --test_crops=1 --batch_size=16  --gpus 0 --output_dir  -j 4 --clip_index=1
      
    2. Run the following scripts to get result from the raw score:
      python3 pkl_to_results.py --num_clips 1 --test_crops 1 --output_dir   
      
  • For 3 crops, 10 clips, the processing of testing can be summarized into 2 steps:
    1. Run the following testing scripts for 10 times(clip_index from 0 to 9):
      CUDA_VISIBLE_DEVICES=0 python3 test_models_three_crops.py  kinetics \
      --archs='resnet50' --weights   --test_segments=8 \
      --test_crops=3 --batch_size=16 --full_res --gpus 0 --output_dir   \
      -j 4 --clip_index 
      
    2. Run the following scripts to ensemble the raw score of the 30 views:
      python pkl_to_results.py --num_clips 10 --test_crops 3 --output_dir  
      

Training

This implementation supports multi-gpu, DistributedDataParallel training, which is faster and simpler.

  • For example, to train TDN-ResNet50 on Something-Something-V1 with 8 gpus, you can run:
    python -m torch.distributed.launch --master_port 12347 --nproc_per_node=8 \
                main.py  something  RGB --arch resnet50 --num_segments 8 --gd 20 --lr 0.02 \
                --lr_scheduler step --lr_steps  30 45 55 --epochs 60 --batch-size 16 \
                --wd 5e-4 --dropout 0.5 --consensus_type=avg --eval-freq=1 -j 4 --npb 
    
  • For example, to train TDN-ResNet50 on Kinetics400 with 8 gpus, you can run:
    python -m torch.distributed.launch --master_port 12347 --nproc_per_node=8 \
            main.py  kinetics RGB --arch resnet50 --num_segments 8 --gd 20 --lr 0.02 \
            --lr_scheduler step  --lr_steps 50 75 90 --epochs 100 --batch-size 16 \
            --wd 1e-4 --dropout 0.5 --consensus_type=avg --eval-freq=1 -j 4 --npb 
    

Acknowledgements

We especially thank the contributors of the TSN and TSM codebase for providing helpful code.

License

This repository is released under the Apache-2.0. license as found in the LICENSE file.

Citation

If you think our work is useful, please feel free to cite our paper 😆 :

@article{wang2020tdn,
      title={TDN: Temporal Difference Networks for Efficient Action Recognition}, 
      author={Limin Wang and Zhan Tong and Bin Ji and Gangshan Wu},
      journal={arXiv preprint arXiv:2012.10071},
      year={2020}
}
Owner
Multimedia Computing Group, Nanjing University
Multimedia Computing Group, Nanjing University
Implementation of CVPR'21: RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction

RfD-Net [Project Page] [Paper] [Video] RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction Yinyu Nie, Ji Hou, Xiaoguang Han, Matthi

Yinyu Nie 162 Jan 06, 2023
An excellent hash algorithm combining classical sponge structure and RNN.

SHA-RNN Recurrent Neural Network with Chaotic System for Hash Functions Anonymous Authors [摘要] 在这次作业中我们提出了一种新的 Hash Function —— SHA-RNN。其以海绵结构为基础,融合了混

Houde Qian 5 May 15, 2022
Research code for CVPR 2021 paper "End-to-End Human Pose and Mesh Reconstruction with Transformers"

MeshTransformer ✨ This is our research code of End-to-End Human Pose and Mesh Reconstruction with Transformers. MEsh TRansfOrmer is a simple yet effec

Microsoft 473 Dec 31, 2022
MonoRCNN is a monocular 3D object detection method for automonous driving

MonoRCNN MonoRCNN is a monocular 3D object detection method for automonous driving, published at ICCV 2021. This project is an implementation of MonoR

87 Dec 27, 2022
DFM: A Performance Baseline for Deep Feature Matching

DFM: A Performance Baseline for Deep Feature Matching Python (Pytorch) and Matlab (MatConvNet) implementations of our paper DFM: A Performance Baselin

143 Jan 02, 2023
Implementation of GGB color space

GGB Color Space This package is implementation of GGB color space from Development of a Robust Algorithm for Detection of Nuclei and Classification of

Resha Dwika Hefni Al-Fahsi 2 Oct 06, 2021
PyTorch Lightning + Hydra. A feature-rich template for rapid, scalable and reproducible ML experimentation with best practices. ⚡🔥⚡

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

Łukasz Zalewski 2.1k Jan 09, 2023
Simple tutorials using Google's TensorFlow Framework

TensorFlow-Tutorials Introduction to deep learning based on Google's TensorFlow framework. These tutorials are direct ports of Newmu's Theano Tutorial

Nathan Lintz 6k Jan 06, 2023
TransMorph: Transformer for Medical Image Registration

TransMorph: Transformer for Medical Image Registration keywords: Vision Transformer, Swin Transformer, convolutional neural networks, image registrati

Junyu Chen 180 Jan 07, 2023
This is official implementaion of paper "Token Shift Transformer for Video Classification".

This is official implementaion of paper "Token Shift Transformer for Video Classification". We achieve SOTA performance 80.40% on Kinetics-400 val. Paper link

VideoNet 60 Dec 30, 2022
Federated Learning Based on Dynamic Regularization

Federated Learning Based on Dynamic Regularization This is implementation of Federated Learning Based on Dynamic Regularization. Requirements Please i

39 Jan 07, 2023
Poplar implementation of "Bundle Adjustment on a Graph Processor" (CVPR 2020)

Poplar Implementation of Bundle Adjustment using Gaussian Belief Propagation on Graphcore's IPU Implementation of CVPR 2020 paper: Bundle Adjustment o

Joe Ortiz 34 Dec 05, 2022
Improving Deep Network Debuggability via Sparse Decision Layers

Improving Deep Network Debuggability via Sparse Decision Layers This repository contains the code for our paper: Leveraging Sparse Linear Layers for D

Madry Lab 35 Nov 14, 2022
A privacy-focused, intelligent security camera system.

Self-Hosted Home Security Camera System A privacy-focused, intelligent security camera system. Features: Multi-camera support w/ minimal configuration

Scott Barnes 175 Jan 01, 2023
The final project of "Applying AI to 2D Medical Imaging Data" of "AI for Healthcare" nanodegree - Udacity.

Pneumonia Detection from X-Rays Project Overview In this project, you will apply the skills that you have acquired in this 2D medical imaging course t

Omar Laham 1 Jan 14, 2022
The BCNet related data and inference model.

BCNet This repository includes the some source code and related dataset of paper BCNet: Learning Body and Cloth Shape from A Single Image, ECCV 2020,

81 Dec 12, 2022
Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks

MGANs Training & Testing code (torch), pre-trained models and supplementary materials for "Precomputed Real-Time Texture Synthesis with Markovian Gene

290 Nov 15, 2022
Digital Twin Mobility Profiling: A Spatio-Temporal Graph Learning Approach

Digital Twin Mobility Profiling: A Spatio-Temporal Graph Learning Approach This is the implementation of traffic prediction code in DTMP based on PyTo

chenxin 1 Dec 19, 2021
Source code related to the article submitted to the International Conference on Computational Science ICCS 2022 in London

POTHER: Patch-Voted Deep Learning-based Chest X-ray Bias Analysis for COVID-19 Detection Source code related to the article submitted to the Internati

Tomasz Szczepański 1 Apr 29, 2022
A unified framework for machine learning with time series

Welcome to sktime A unified framework for machine learning with time series We provide specialized time series algorithms and scikit-learn compatible

The Alan Turing Institute 6k Jan 08, 2023