DFM: A Performance Baseline for Deep Feature Matching

Related tags

Deep LearningDFM
Overview

DFM: A Performance Baseline for Deep Feature Matching

Python (Pytorch) and Matlab (MatConvNet) implementations of our paper DFM: A Performance Baseline for Deep Feature Matching at CVPR 2021 Image Matching Workshop.

Paper (CVF) | Paper (arXiv)
Presentation (live) | Presentation (recording)

Overview

Setup Environment

We strongly recommend using Anaconda. Open a terminal in ./python folder, and simply run the following lines to create the environment:

conda env create -f environment.yml
conda activte dfm

Dependencies
If you do not use conda, DFM needs the following dependencies:
(Versions are not strict; however, we have tried DFM with these specific versions.)

  • python=3.7.1
  • pytorch=1.7.1
  • torchvision=0.8.2
  • cudatoolkit=11.0
  • matplotlib=3.3.4
  • pillow=8.2.0
  • opencv=3.4.2
  • ipykernel=5.3.4
  • pyyaml=5.4.1

Enjoy with DFM!

Now you are ready to test DFM by the following command:

python dfm.py --input_pairs image_pairs.txt

You should make the image_pairs.txt file as following:

1A> 1B>
2A> 2B>
.
.
.
nA> nB>

If you want to run DFM with a specific configuration, you can make changes to the following arguments in config.yml:

  • Use enable_two_stage to enable or disable two stage approach (default: True)
    (Note: Make it enable for planar scenes with significant viewpoint changes, otherwise disable.)
  • Use model to change the pre-trained model (default: VGG19)
    (Note: DFM only supports VGG19 and VGG19_BN right now, we plan to add other backbones.)
  • Use ratio_th to change ratio test thresholds (default: [0.9, 0.9, 0.9, 0.9, 0.95, 1.0])
    (Note: These ratio test thresholds are for 1st to 5th layer, the last threshold (6th) are for Stage-0 and only usable when --enable_two_stage=True)
  • Use bidirectional to enable or disable bidirectional ratio test. (default: True)
    (Note: Make it enable to find more robust matches. Naturally, it should be enabled, make it False is only for similar results with our Matlab implementation since Matlab's matchFeatures function does not execute ratio test in a bidirectional way.)
  • Use display_results to enable or disable displaying results (default: True)
    (Note: If True, DFM saves matched image pairs to output_directory.)
  • Use output_directory to define output directory. (default: 'results')
    (Note: imageA_imageB_matches.npz will be created in output_directory for each image pair.)

Evaluation

Currently, we do not have support evaluation for our Python implementation. You can use our Image Matching Evaluation repository (coming soon), in which we have support to evaluate SuperPoint, SuperGlue, Patch2Pix, and DFM algorithms on HPatches. Also, you can use our Matlab implementation (see For Matlab Users section) to reproduce the results presented in the paper.

Notice

To reproduce our results given in the paper, use our Matlab implementation.
You can get more accurate results (but with fewer features) using Python implementation. It is mainly because MATLAB’s matchFeatures function does not execute ratio test in a bidirectional way, where our Python implementation performs bidirectional ratio test. Nevertheless, we made bidirectionality adjustable in our Python implementation as well.

For Matlab Users

We have implemented and tested DFM on MATLAB R2017b.

Prerequisites

You need to install MatConvNet (we have support for matconvnet-1.0-beta24). Follow the instructions on the official website.

Once you finished the installation of MatConvNet, you should download pretratined VGG-19 network to the ./matlab/models folder.

Running DFM

Now, you are ready to try DFM!

Just open and run main_DFM.m with your own images.

Evaluation on HPatches

Download HPatches sequences and extract it to ./matlab/data folder.

Run main_hpatches.m which is in ./matlab/HPatches Evaluation folder.

A results.txt file will be generetad in ./matlab/results/HPatches folder.

  • In the first column you can find the pair names.
  • In the 2-11 column you can find the Mean Matching Accuracy (MMA) results for 1-10 pixel thresholds.
  • In 12th column you can find number of matched features.
  • Columns 13-17 are for best homography estimation results (denoted as boe in the paper)
  • Columns 18-22 are for worst homography estimation results (denoted as woe in the paper)
  • Columns 22-71 are for 10 different homography estimation tests.

BibTeX Citation

Please cite our paper if you use the code:

@InProceedings{Efe_2021_CVPR,
    author    = {Efe, Ufuk and Ince, Kutalmis Gokalp and Alatan, Aydin},
    title     = {DFM: A Performance Baseline for Deep Feature Matching},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
    month     = {June},
    year      = {2021},
    pages     = {4284-4293}
}
Owner
MSc student @ METU
Simple and Distributed Machine Learning

Synapse Machine Learning SynapseML (previously MMLSpark) is an open source library to simplify the creation of scalable machine learning pipelines. Sy

Microsoft 3.9k Dec 30, 2022
Official implementation for "Low-light Image Enhancement via Breaking Down the Darkness"

Low-light Image Enhancement via Breaking Down the Darkness by Qiming Hu, Xiaojie Guo. 1. Dependencies Python3 PyTorch=1.0 OpenCV-Python, TensorboardX

Qiming Hu 30 Jan 01, 2023
Official code for "Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes", CVPR2022

[CVPR 2022] Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes Dongkwon Jin, Wonhui Park, Seong-Gyun Jeong, Heeyeon Kwon, and Cha

Dongkwon Jin 106 Dec 29, 2022
E2C implementation in PyTorch

Embed to Control implementation in PyTorch Paper can be found here: https://arxiv.org/abs/1506.07365 You will need a patched version of OpenAI Gym in

Yicheng Luo 42 Dec 12, 2022
Implementation of trRosetta and trDesign for Pytorch, made into a convenient package

trRosetta - Pytorch (wip) Implementation of trRosetta and trDesign for Pytorch, made into a convenient package

Phil Wang 67 Dec 17, 2022
code for our BMVC 2021 paper "HCV: Hierarchy-Consistency Verification for Incremental Implicitly-Refined Classification"

HCV_IIRC code for our BMVC 2021 paper HCV: Hierarchy-Consistency Verification for Incremental Implicitly-Refined Classification by Kai Wang, Xialei Li

kai wang 13 Oct 03, 2022
Unofficial PyTorch Implementation for HifiFace (https://arxiv.org/abs/2106.09965)

HifiFace — Unofficial Pytorch Implementation Image source: HifiFace: 3D Shape and Semantic Prior Guided High Fidelity Face Swapping (figure 1, pg. 1)

MINDs Lab 218 Jan 04, 2023
ICCV2021: Code for 'Spatial Uncertainty-Aware Semi-Supervised Crowd Counting'

ICCV2021: Code for 'Spatial Uncertainty-Aware Semi-Supervised Crowd Counting'

Yanda Meng 14 May 13, 2022
Global Rhythm Style Transfer Without Text Transcriptions

Global Prosody Style Transfer Without Text Transcriptions This repository provides a PyTorch implementation of AutoPST, which enables unsupervised glo

Kaizhi Qian 193 Dec 30, 2022
Train Scene Graph Generation for Visual Genome and GQA in PyTorch >= 1.2 with improved zero and few-shot generalization.

Scene Graph Generation Object Detections Ground truth Scene Graph Generated Scene Graph In this visualization, woman sitting on rock is a zero-shot tr

Boris Knyazev 93 Dec 28, 2022
Code for the paper "Next Generation Reservoir Computing"

Next Generation Reservoir Computing This is the code for the results and figures in our paper "Next Generation Reservoir Computing". They are written

OSU QuantInfo Lab 105 Dec 20, 2022
Structure Information is the Key: Self-Attention RoI Feature Extractor in 3D Object Detection

Structure Information is the Key: Self-Attention RoI Feature Extractor in 3D Object Detection abstract:Unlike 2D object detection where all RoI featur

DK. Zhang 2 Oct 07, 2022
ObjectDetNet is an easy, flexible, open-source object detection framework

Getting started with the ObjectDetNet ObjectDetNet is an easy, flexible, open-source object detection framework which allows you to easily train, resu

5 Aug 25, 2020
Implementation of MA-Trace - a general-purpose multi-agent RL algorithm for cooperative environments.

Off-Policy Correction For Multi-Agent Reinforcement Learning This repository is the official implementation of Off-Policy Correction For Multi-Agent R

4 Aug 18, 2022
Warning: This project does not have any current developer. See bellow.

Pylearn2: A machine learning research library Warning : This project does not have any current developer. We will continue to review pull requests and

Laboratoire d’Informatique des Systèmes Adaptatifs 2.7k Dec 26, 2022
Doosan robotic arm, simulation, control, visualization in Gazebo and ROS2 for Reinforcement Learning.

Robotic Arm Simulation in ROS2 and Gazebo General Overview This repository includes: First, how to simulate a 6DoF Robotic Arm from scratch using GAZE

David Valencia 12 Jan 02, 2023
Official implementation of the paper "Steganographer Detection via a Similarity Accumulation Graph Convolutional Network"

SAGCN - Official PyTorch Implementation | Paper | Project Page This is the official implementation of the paper "Steganographer detection via a simila

ZHANG Zhi 1 Nov 26, 2021
Cluttered MNIST Dataset

Cluttered MNIST Dataset A setup script will download MNIST and produce mnist/*.t7 files: luajit download_mnist.lua Example usage: local mnist_clutter

DeepMind 50 Jul 12, 2022
PASSL包含 SimCLR,MoCo,BYOL,CLIP等基于对比学习的图像自监督算法以及 Vision-Transformer,Swin-Transformer,BEiT,CVT,T2T,MLP_Mixer等视觉Transformer算法

PASSL Introduction PASSL is a Paddle based vision library for state-of-the-art Self-Supervised Learning research with PaddlePaddle. PASSL aims to acce

186 Dec 29, 2022
A Benchmark For Measuring Systematic Generalization of Multi-Hierarchical Reasoning

Orchard Dataset This repository contains the code used for generating the Orchard Dataset, as seen in the Multi-Hierarchical Reasoning in Sequences: S

Bill Pung 1 Jun 05, 2022