Yet another video caption

Overview

yet-another-video-caption

数据集配置

准备数据集

将原始数据集重新组织成统一的格式后,放置于 ./dataset 中。

数据集的组织格式为:

./dataset
    train/
        video/
            *.avi
        ...
        info.json
    test/
        video/ 
            *.avi
        ...

自动配置

通常你只需要使用数据集的一个子集,此时请考虑运行自动抽取脚本 makedata.py

所有数据位于 ./data 中。

所有视频(包括 train/val/test) 位于 ./data/video 中。

所有视频信息(包括 train/val/test)输入到 ./data/input.json

程序会在 ./data 中产生一些中间信息,请勿修改。

依赖

pip install tqdm pillow pretrainedmodels nltk

此外,请确保已当前环境下已经正确配置 CUDA 运行库,CUDNN,Pytorch(GPU),ffmpeg,JDK

食用步骤

  1. 确保数据集已正确配置

  2. 确保依赖已经正确安装

  3. 抽取数据,将你希望使用的 train/val/test 划分参数输入 makedata.py 中,然后执行该脚本

  4. 依次执行(请自行修改 batch_sizesaved_model 参数!)

python prepro_feats.py --output_dir data/feats/resnet152 --model resnet152
python prepro_vocab.py
python train.py --epochs 3001 --batch_size 1 --checkpoint_path data/save --feats_dir data/feats/resnet152 --model S2VTAttModel --with_c3d 0 --dim_vid 2048
python eval.py --recover_opt data/save/opt_info.json --saved_model data/save/model_10.pth --batch_size 1

速度测试

以下结果测试于单张 2080Ti

预处理(ResNet152 特征提取):共 40min

训练速度(batch_size=32):6.20 it/s

Todo

大小写问题

References

https://github.com/xiadingZ/video-caption.pytorch

Owner
Fan Zhimin
Dreams of love and hope never die.
Fan Zhimin
A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation

Aboleth A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation [1] with stochastic gradient variational Bayes

Gradient Institute 127 Dec 12, 2022
Extracting knowledge graphs from language models as a diagnostic benchmark of model performance.

Interpreting Language Models Through Knowledge Graph Extraction Idea: How do we interpret what a language model learns at various stages of training?

EPFL Machine Learning and Optimization Laboratory 9 Oct 25, 2022
Complete the code of prefix-tuning in low data setting

Prefix Tuning Note: 作者在论文中提到使用真实的word去初始化prefix的操作(Initializing the prefix with activations of real words,significantly improves generation)。我在使用作者提供的

Andrew Zeng 4 Jul 11, 2022
MOOSE (Multi-organ objective segmentation) a data-centric AI solution that generates multilabel organ segmentations to facilitate systemic TB whole-person research

MOOSE (Multi-organ objective segmentation) a data-centric AI solution that generates multilabel organ segmentations to facilitate systemic TB whole-person research.The pipeline is based on nn-UNet an

QIMP team 30 Jan 01, 2023
TensorFlow (v2.7.0) benchmark results on an M1 Macbook Air 2020 laptop (macOS Monterey v12.1).

M1-tensorflow-benchmark TensorFlow (v2.7.0) benchmark results on an M1 Macbook Air 2020 laptop (macOS Monterey v12.1). I was initially testing if Tens

particle 2 Jan 05, 2022
Implementation of the method described in the Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.

Speech Resynthesis from Discrete Disentangled Self-Supervised Representations Implementation of the method described in the Speech Resynthesis from Di

4 Mar 11, 2022
Object detection and instance segmentation toolkit based on PaddlePaddle.

Object detection and instance segmentation toolkit based on PaddlePaddle.

9.3k Jan 02, 2023
BMN: Boundary-Matching Network

BMN: Boundary-Matching Network A pytorch-version implementation codes of paper: "BMN: Boundary-Matching Network for Temporal Action Proposal Generatio

qinxin 260 Dec 06, 2022
[ICLR 2021] Is Attention Better Than Matrix Decomposition?

Enjoy-Hamburger 🍔 Official implementation of Hamburger, Is Attention Better Than Matrix Decomposition? (ICLR 2021) Under construction. Introduction T

Gsunshine 271 Dec 29, 2022
A torch implementation of "Pixel-Level Domain Transfer"

Pixel Level Domain Transfer A torch implementation of "Pixel-Level Domain Transfer". based on dcgan.torch. Dataset The dataset used is "LookBook", fro

Fei Xia 260 Sep 02, 2022
The official PyTorch implementation of recent paper - SAINT: Improved Neural Networks for Tabular Data via Row Attention and Contrastive Pre-Training

This repository is the official PyTorch implementation of SAINT. Find the paper on arxiv SAINT: Improved Neural Networks for Tabular Data via Row Atte

Gowthami Somepalli 284 Dec 21, 2022
Diffusion Probabilistic Models for 3D Point Cloud Generation (CVPR 2021)

Diffusion Probabilistic Models for 3D Point Cloud Generation [Paper] [Code] The official code repository for our CVPR 2021 paper "Diffusion Probabilis

Shitong Luo 323 Jan 05, 2023
This repository is a series of notebooks that show solutions for the projects at Dataquest.io.

Dataquest Project Solutions This repository is a series of notebooks that show solutions for the projects at Dataquest.io. Of course, there are always

Dataquest 1.1k Dec 30, 2022
Find the Heart simple Python Game

This is a simple Python game for finding a heart emoji. There is a 3 x 3 matrix in which a heart emoji resides. The location of the heart is randomized and is not revealed. The player must guess the

p.katekomol 1 Jan 24, 2022
Official Implementation for Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation

Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation We present a generic image-to-image translation framework, pixel2style2pixel (pSp

2.8k Dec 30, 2022
[NeurIPS-2020] Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID.

Self-paced Contrastive Learning (SpCL) The official repository for Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID

Yixiao Ge 286 Dec 21, 2022
Uni-Fold: Training your own deep protein-folding models

Uni-Fold: Training your own deep protein-folding models. This package provides an implementation of a trainable, Transformer-based deep protein foldin

DP Technology 187 Jan 04, 2023
Reinforcement learning for self-driving in a 3D simulation

SelfDrive_AI Reinforcement learning for self-driving in a 3D simulation (Created using UNITY-3D) 1. Requirements for the SelfDrive_AI Gym You need Pyt

Surajit Saikia 17 Dec 14, 2021
PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.

PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.

DLR-RM 4.7k Jan 01, 2023
Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Meng Liu 2 Jul 19, 2022