PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

Related tags

Deep LearningCoMON
Overview

Conference Python 3.6 Supports Habitat Lab

Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents

This is a PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

Project Webpage: https://shivanshpatel35.github.io/comon/

CoMON Task

In CoMON, an episode involves two heterogeneous agents -- a disembodied agent with access to oracle top-down map of the environment and an embodied agent which navigates and interacts with the environment. The two agents communicate and collaborate to perform the MultiON task.

Communication Mechanisms

Architecture Overview

Installing dependencies:

This code is tested on python 3.6.10, pytorch v1.4.0 and CUDA V9.1.85.

Install pytorch from https://pytorch.org/ according to your machine configuration.

This code uses older versions of habitat-sim and habitat-lab. Install them by running the following commands:

Installing habitat-sim:

git clone https://github.com/facebookresearch/habitat-sim.git
cd habitat-sim 
git checkout ae6ba1cdc772f7a5dedd31cbf9a5b77f6de3ff0f
pip install -r requirements.txt; 
python setup.py install --headless # (for headless machines with GPU)
python setup.py install # (for machines with display attached)

Installing habitat-lab:

git clone --branch stable https://github.com/facebookresearch/habitat-lab.git
cd habitat-lab
git checkout 676e593b953e2f0530f307bc17b6de66cff2e867
pip install -e .

For installation issues in habitat, feel free to raise an issue in this repository, or in the corresponding habitat repository.

Setup

Clone the repository and install the requirements:

git clone https://github.com/saimwani/comon
cd comon
pip install -r requirements.txt

Downloading data and checkpoints

To evaluate pre-trained models and train new models, you will need to download the MultiON dataset, including objects inserted into the scenes, and model checkpoints for CoMON. Running download_data.sh from the root directory (CoMON/) will download the data and extract it to appropriate directories. Note that you are still required to download Matterport3D scenes after you run the script (see section on Download Matterport3D scenes below).

bash download_multion_data.sh

Download multiON dataset

You do not need to complete this step if you have successfully run the download_data.sh script above.

Run the following to download multiON dataset and cached oracle occupancy maps:

mkdir data
cd data
mkdir datasets
cd datasets
wget -O multinav.zip "http://aspis.cmpt.sfu.ca/projects/multion/multinav.zip"
unzip multinav.zip && rm multinav.zip
cd ../
wget -O objects.zip "http://aspis.cmpt.sfu.ca/projects/multion/objects.zip"
unzip objects.zip && rm objects.zip
wget -O default.phys_scene_config.json "http://aspis.cmpt.sfu.ca/projects/multion/default.phys_scene_config.json"
cd ../
mkdir oracle_maps
cd oracle_maps
wget -O map300.pickle "http://aspis.cmpt.sfu.ca/projects/multion/map300.pickle"
cd ../

Download Matterport3D scenes

The Matterport scene dataset and multiON dataset should be placed in data folder under the root directory (multiON/) in the following format:

CoMON/
  data/
    scene_datasets/
      mp3d/
        1LXtFkjw3qL/
          1LXtFkjw3qL.glb
          1LXtFkjw3qL.navmesh
          ...
    datasets/
      multinav/
        3_ON/
          train/
            ...
          val/
            val.json.gz
        2_ON
          ...
        1_ON
          ...

Download Matterport3D data for Habitat by following the instructions mentioned here.

Usage

Pre-trained models

You do not need to complete this step if you have successfully run the download_data.sh script above.

mkdir model_checkpoints

Download a model checkpoint for Unstructured communication (U-Comm) or Structured communication (S-Comm) setup as shown below.

Agent Run
U-Comm wget -O model_checkpoints/ckpt.1.pth "http://aspis.cmpt.sfu.ca/projects/comon/model_checkpoints/un_struc/ckpt.1.pth"
S-Comm wget -O model_checkpoints/ckpt.1.pth "http://aspis.cmpt.sfu.ca/projects/comon/model_checkpoints/struc/ckpt.1.pth"

Evaluation

To evaluate a pretrained S-Comm agent, run this from the root folder (CoMON/):

python habitat_baselines/run.py --exp-config habitat_baselines/config/multinav/comon.yaml --comm-type struc --run-type eval

For U-Comm setup, replace struc with un-struc.

Average evaluation metrics are printed on the console when evaluation ends. Detailed metrics are placed in tb/eval/metrics directory.

Training

For training an S-Comm agent, run this from the root directory:

python habitat_baselines/run.py --exp-config habitat_baselines/config/multinav/comon.yaml --comm-type struc --run-type train

For U-Comm, replace struc with un-struc.

Citation

Shivansh Patel*, Saim Wani*, Unnat Jain*, Alexander Schwing, Svetlana Lazebnik, Manolis Savva, Angel X. Chang. Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents In ICCV 2021. PDF

Bibtex

@inproceedings{patel2021interpretation,
  Author = {Shivansh Patel and Saim Wani and Unnat Jain and Alexander Schwing and 
  Svetlana Lazebnik and  Manolis Savva and Angel X. Chang},
  Title = {Interpretation of Emergent Communication 
  in Heterogeneous Collaborative Embodied Agents},
  Booktitle = {ICCV},
  Year = {2021}
  }

Acknowledgements

This repository is built upon Habitat Lab.

Owner
Saim Wani
Saim Wani
Official implementation for "Low-light Image Enhancement via Breaking Down the Darkness"

Low-light Image Enhancement via Breaking Down the Darkness by Qiming Hu, Xiaojie Guo. 1. Dependencies Python3 PyTorch=1.0 OpenCV-Python, TensorboardX

Qiming Hu 30 Jan 01, 2023
Open-source Monocular Python HawkEye for Tennis

Tennis Tracking 🎾 Objectives Track the ball Detect court lines Detect the players To track the ball we used TrackNet - deep learning network for trac

ArtLabs 188 Jan 08, 2023
DeepSTD: Mining Spatio-temporal Disturbances of Multiple Context Factors for Citywide Traffic Flow Prediction

DeepSTD: Mining Spatio-temporal Disturbances of Multiple Context Factors for Citywide Traffic Flow Prediction This is the implementation of DeepSTD in

5 Sep 26, 2022
Official code repository for Continual Learning In Environments With Polynomial Mixing Times

Official code for Continual Learning In Environments With Polynomial Mixing Times Continual Learning in Environments with Polynomial Mixing Times This

Sharath Raparthy 1 Dec 19, 2021
Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized Codes

Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized C

Sam Bond-Taylor 139 Jan 04, 2023
Code & Data for the Paper "Time Masking for Temporal Language Models", WSDM 2022

Time Masking for Temporal Language Models This repository provides a reference implementation of the paper: Time Masking for Temporal Language Models

Guy Rosin 12 Jan 06, 2023
PyTorch implementation of Tacotron speech synthesis model.

tacotron_pytorch PyTorch implementation of Tacotron speech synthesis model. Inspired from keithito/tacotron. Currently not as much good speech quality

Ryuichi Yamamoto 279 Dec 09, 2022
A SAT-based sudoku solver

SAT Sudoku solver A SAT-based Sudoku solver made in the context of a small project in the "Logic Problem Solving" class in the first year at the Polyt

Alexandre Malfreyt 5 Apr 15, 2022
《Geo Word Clouds》paper implementation

《Geo Word Clouds》paper implementation

Russellwzr 2 Jan 28, 2022
VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations

VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations 3D-aware Image Synthesis via Learning Structural and Textura

GenForce: May Generative Force Be with You 116 Dec 26, 2022
Research - dataset and code for 2016 paper Learning a Driving Simulator

the people's comma the paper Learning a Driving Simulator the comma.ai driving dataset 7 and a quarter hours of largely highway driving. Enough to tra

comma.ai 4.1k Jan 02, 2023
Open standard for machine learning interoperability

Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides

Open Neural Network Exchange 13.9k Dec 30, 2022
Supervised Contrastive Learning for Product Matching

Contrastive Product Matching This repository contains the code and data download links to reproduce the experiments of the paper "Supervised Contrasti

Web-based Systems Group @ University of Mannheim 18 Dec 10, 2022
Machine learning library for fast and efficient Gaussian mixture models

This repository contains code which implements the Stochastic Gaussian Mixture Model (S-GMM) for event-based datasets Dependencies CMake Premake4 Blaz

Omar Oubari 1 Dec 19, 2022
Official Implementation of 'UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers' ICLR 2021(spotlight)

UPDeT Official Implementation of UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers (ICLR 2021 spotlight) The

hhhusiyi 96 Dec 22, 2022
Code for EMNLP 2021 paper: "Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training"

SCAPT-ABSA Code for EMNLP2021 paper: "Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training" Overvie

Zhengyan Li 66 Dec 04, 2022
A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising (CVPR 2020 Oral & TPAMI 2021)

ELD The implementation of CVPR 2020 (Oral) paper "A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising" and its journal (TPAMI) v

Kaixuan Wei 359 Jan 01, 2023
Locally Constrained Self-Attentive Sequential Recommendation

LOCKER This is the pytorch implementation of this paper: Locally Constrained Self-Attentive Sequential Recommendation. Zhankui He, Handong Zhao, Zhe L

Zhankui (Aaron) He 8 Jul 30, 2022
Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation

Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation Requirements This repository needs mmsegmentation Training To train

Adelaide Intelligent Machines (AIM) Group 7 Sep 12, 2022
Pytorch implementation of our method for regularizing nerual radiance fields for few-shot neural volume rendering.

InfoNeRF: Ray Entropy Minimization for Few-Shot Neural Volume Rendering Pytorch implementation of our method for regularizing nerual radiance fields f

106 Jan 06, 2023