The dataset and source code for our paper: "Did You Ask a Good Question? A Cross-Domain Question IntentionClassification Benchmark for Text-to-SQL"

Overview

TriageSQL

The dataset and source code for our paper: "Did You Ask a Good Question? A Cross-Domain Question Intention Classification Benchmark for Text-to-SQL"

Dataset Download

Due to the size limitation, please download the dataset from Google Drive.

Citations

If you want to use TriageSQL in your work, please cite as follows:

@article{zhang2020did,
  title={Did You Ask a Good Question? A Cross-Domain Question Intention Classification Benchmark for Text-to-SQL},
  author={Zhang, Yusen and Dong, Xiangyu and Chang, Shuaichen and Yu, Tao and Shi, Peng and Zhang, Rui},
  journal={arXiv preprint arXiv:2010.12634},
  year={2020}
}

Dataset

In each json file of the dataset, one can find a field called type, which includes 5 different values, including small talk, answerable, ambiguous, lack data, and unanswerable by sql, corresponding to 5 different types described in our paper. Here is the summary of our dataset and the corresponding experiment results:

Type Trainset Devset Testset Type Alias Reported F1
small talk 31160 7790 500 Improper 0.88
ambiguous 48592 9564 500 Ambiguous 0.43
lack data 90375 19566 500 ExtKnow 0.56
unanswerable by sql 124225 26330 500 Non-SQL 0.90
answerable 139884 32892 500 Answerable 0.53
overall 434236 194037 2500 TriageSQL 0.66

The folder src contains all the source files used to construct the proposed TriageSQL. In addition, some part of files contains more details about the dataset, such as databaseid which is the id of the schema in the original dataset, e.g. "flight_2" in CoSQL, while question_datasetid indicates the original dataset name of the questions, e.g. "quac". Some of the samples do not contain these fields because they are either human-annotated or edited.

Model

We also include the source code for RoBERTa baseline in our project in /model. It is a multi-classifer with 5 classes where '0' represents answerable, '1'-'4' represent distinct types of unanswerable questions. Given the dataset from Google Drive, you may need to conduct some preprocessing to obtain train/dev/test set. You can directly download from here or make your own dataset using the following instructions:

Constructing input file for the RoBERTa model

The same as /testset/test.json, our input file is a json list with shape (num_of_question, 3) containing 3 lists: query, schema, and label.

  • query: containing strings of questions
  • schema: contianing strings of schema for each question, i.e., "table_name.column_name1 | table_name.column_name2 | ... " for multi-table questions, and column_name1 | column_name2 for single-table questions.
  • labels of questions, see config.label_dict for the mapping, leave arbitary value if testing is not needed or true labels are not given.

when preprocessing, please use lower case for all data, and remove the meaningless table names as well, such as T10023-1242. Also, we sample 10k from each type to form the large input dataset

Running

After adjusting the parameters in config.py, one can simply run python train.py or python eval.py to train or evaluate the model.

Explanation of other files

  • config.py: hyper parameters
  • train.py: training and evaluation of the model
  • utils.py: loading the dataset and tokenization
  • model.py: the RoBERTa classification model we used
  • test.json: sample of test input
Owner
Yusen Zhang
Yusen Zhang
CS550 Machine Learning course project on CNN Detection.

CNN Detection (CS550 Machine Learning Project) Team Members (Tensor) : Yadava Kishore Chodipilli (11940310) Thashmitha BS (11941250) This is a work do

yaadava_kishore 2 Jan 30, 2022
Official code for the ICCV 2021 paper "DECA: Deep viewpoint-Equivariant human pose estimation using Capsule Autoencoders"

DECA Official code for the ICCV 2021 paper "DECA: Deep viewpoint-Equivariant human pose estimation using Capsule Autoencoders". All the code is writte

23 Dec 01, 2022
The Most Efficient Temporal Difference Learning Framework for 2048

moporgic/TDL2048+ TDL2048+ is a highly optimized temporal difference (TD) learning framework for 2048. Features Many common methods related to 2048 ar

Hung Guei 5 Nov 23, 2022
PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks

Code for the paper "PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks" (ICPR 2020)

Wenwen Yu 498 Dec 24, 2022
The Submission for SIMMC 2.0 Challenge 2021

The Submission for SIMMC 2.0 Challenge 2021 challenge website Requirements python 3.8.8 pytorch 1.8.1 transformers 4.8.2 apex for multi-gpu nltk Prepr

5 Jul 26, 2022
基于PaddleOCR搭建的OCR server... 离线部署用

开头说明 DangoOCR 是基于大家的 CPU处理器 来运行的,CPU处理器 的好坏会直接影响其速度, 但不会影响识别的精度 ,目前此版本识别速度可能在 0.5-3秒之间,具体取决于大家机器的配置,可以的话尽量不要在运行时开其他太多东西。需要配合团子翻译器 Ver3.6 及其以上的版本才可以使用!

胖次团子 131 Dec 25, 2022
Multi-Joint dynamics with Contact. A general purpose physics simulator.

MuJoCo Physics MuJoCo stands for Multi-Joint dynamics with Contact. It is a general purpose physics engine that aims to facilitate research and develo

DeepMind 5.2k Jan 02, 2023
This is the official repository of XVFI (eXtreme Video Frame Interpolation)

XVFI This is the official repository of XVFI (eXtreme Video Frame Interpolation), https://arxiv.org/abs/2103.16206 Last Update: 20210607 We provide th

Jihyong Oh 195 Dec 29, 2022
Official code for the paper: Deep Graph Matching under Quadratic Constraint (CVPR 2021)

QC-DGM This is the official PyTorch implementation and models for our CVPR 2021 paper: Deep Graph Matching under Quadratic Constraint. It also contain

Quankai Gao 55 Nov 14, 2022
a dnn ai project to classify which food people are eating on audio recordings

Deep Learning - EAT Challenge About This project is part of an AI challenge of the DeepLearning course 2021 at the University of Augsburg. The objecti

Marco Tröster 1 Oct 24, 2021
Official implementation of NLOS-OT: Passive Non-Line-of-Sight Imaging Using Optimal Transport (IEEE TIP, accepted)

NLOS-OT Official implementation of NLOS-OT: Passive Non-Line-of-Sight Imaging Using Optimal Transport (IEEE TIP, accepted) Description In this reposit

Ruixu Geng(耿瑞旭) 16 Dec 16, 2022
Code for technical report "An Improved Baseline for Sentence-level Relation Extraction".

RE_improved_baseline Code for technical report "An Improved Baseline for Sentence-level Relation Extraction". Requirements torch = 1.8.1 transformers

Wenxuan Zhou 74 Nov 29, 2022
To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types

To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types, from a Database Taken From Dr. Wolberg reports his Clinic Cases.

Astitva Veer Garg 1 Jul 31, 2022
Ranking Models in Unlabeled New Environments (iccv21)

Ranking Models in Unlabeled New Environments Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch 1.7.0 + torchivision 0.8.1

14 Dec 17, 2021
ReGAN: Sequence GAN using RE[INFORCE|LAX|BAR] based PG estimators

Sequence Generation with GANs trained by Gradient Estimation Requirements: PyTorch v0.3 Python 3.6 CUDA 9.1 (For GPU) Origin The idea is from paper Se

40 Nov 03, 2022
NLP From Scratch Without Large-Scale Pretraining: A Simple and Efficient Framework

NLP From Scratch Without Large-Scale Pretraining This repository contains the code, pre-trained model checkpoints and curated datasets for our paper:

Xingcheng Yao 224 Dec 08, 2022
TuckER: Tensor Factorization for Knowledge Graph Completion

TuckER: Tensor Factorization for Knowledge Graph Completion This codebase contains PyTorch implementation of the paper: TuckER: Tensor Factorization f

Ivana Balazevic 296 Dec 06, 2022
A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019).

ClusterGCN ⠀⠀ A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019). A

Benedek Rozemberczki 697 Dec 27, 2022
Efficient electromagnetic solver based on rigorous coupled-wave analysis for 3D and 2D multi-layered structures with in-plane periodicity

Efficient electromagnetic solver based on rigorous coupled-wave analysis for 3D and 2D multi-layered structures with in-plane periodicity, such as gratings, photonic-crystal slabs, metasurfaces, surf

Alex Song 17 Dec 19, 2022
Code for KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny MLPs

KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny MLPs Check out the paper on arXiv: https://arxiv.org/abs/2103.13744 This repo cont

Christian Reiser 373 Dec 20, 2022