Camera calibration & 3D pose estimation tools for AcinoSet

Related tags

Deep LearningAcinoSet
Overview

AcinoSet: A 3D Pose Estimation Dataset and Baseline Models for Cheetahs in the WildCheetah

Daniel Joska, Liam Clark, Naoya Muramatsu, Ricardo Jericevich, Fred Nicolls, Alexander Mathis, Mackenzie W. Mathis, Amir Patel

AcinoSet is a dataset of free-running cheetahs in the wild that contains 119,490 frames of multi-view synchronized high-speed video footage, camera calibration files and 7,588 human-annotated frames. We utilize markerless animal pose estimation with DeepLabCut to provide 2D keypoints (in the 119K frames). Then, we use three methods that serve as strong baselines for 3D pose estimation tool development: traditional sparse bundle adjustment, an Extended Kalman Filter, and a trajectory optimization-based method we call Full Trajectory Estimation. The resulting 3D trajectories, human-checked 3D ground truth, and an interactive tool to inspect the data is also provided. We believe this dataset will be useful for a diverse range of fields such as ecology, robotics, biomechanics, as well as computer vision.

AcinoSet code by:

Prerequisites

  • Anaconda
  • The dependecies defined in conda_envs/*.yml

What we provide:

The following sections document how this was created by the code within this repo:

Pre-trained DeepLabCut Model:

  • You can use the full_cheetah model provided in the DLC Model Zoo to re-create the existing H5 files (or on new videos).
  • Here, we also already provide the videos and H5 outputs of all frames, here.

Labelling Cheetah Body Positions:

If you want to label more cheetah data, you can also do so within the DeepLabCut framework. We provide a conda file for an easy-install, but please see the repo for installation and instructions for use.

$ conda env create -f conda_envs/DLC.yml -n DLC

AcinoSet Setup:

Navigate to the AcinoSet folder and build the environment:

$ conda env create -f conda_envs/acinoset.yml

Launch Jupyter Lab:

$ jupyter lab

Camera Calibration and 3D Reconstruction:

Intrinsic and Extrinsic Calibration:

Open calib_with_gui.ipynb and follow the instructions.

Alternatively, if the checkerboard points detected in calib_with_gui.ipynb are unsatisfactory, open saveMatlabPointsForAcinoSet.m in MATLAB and follow the instructions. Note that this requires MATLAB 2020b or later.

Optionally: Manually defining the shared points for extrinsic calibration:

You can manually define points on each video in a scene with Argus Clicker. A quick tutorial is found here.

Build the environment:

$ conda env create -f conda_envs/argus.yml

Launch Argus Clicker:

$ python
>>> import argus_gui as ag; ag.ClickerGUI()

Keyboard Shortcuts (See documentation here for more):

  • G ... to a specific frame
  • X ... to switch the sync mode setting the windows to the same frame
  • O ... to bring up the options dialog
  • S ... to bring up a save dialog

Then you must convert the output data from Argus to work with the rest of the pipeline (here is an example):

$ python argus_converter.py \
    --data_dir ../data/2019_03_07/extrinsic_calib/argus_folder

3D Reconstruction:

To reconstruct a cheetah into 3D, we offer three different pose estimation options on top of standard triangulation (TRI):

  • Sparse Bundle Adjustment (SBA)
  • Extended Kalman Filter (EKF)
  • Full Trajectory Estimation (FTE)

You can run each option seperately. For example, simply open FTE.ipynb and follow the instructions! Otherwise, you can run all types of refinements in one go:

python all_optimizations.py --data_dir 2019_03_09/lily/run --start_frame 70 --end_frame 170 --dlc_thresh 0.5

NB: When running the FTE, we recommend that you use the MA86 solver. For details on how to set this up, see these instructions.

Citation

We ask that if you use our code or data, kindly cite (and note it is accepted to ICRA 2021, so please check back for an updated ref):

@misc{joska2021acinoset,
      title={AcinoSet: A 3D Pose Estimation Dataset and Baseline Models for Cheetahs in the Wild}, 
      author={Daniel Joska and Liam Clark and Naoya Muramatsu and Ricardo Jericevich and Fred Nicolls and Alexander Mathis and Mackenzie W. Mathis and Amir Patel},
      year={2021},
      eprint={2103.13282},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
African Robotics Unit
A grouping of robotics researchers at the University of Cape Town who study problems we as Africans are uniquely positioned to solve
African Robotics Unit
Meshed-Memory Transformer for Image Captioning. CVPR 2020

M²: Meshed-Memory Transformer This repository contains the reference code for the paper Meshed-Memory Transformer for Image Captioning (CVPR 2020). Pl

AImageLab 422 Dec 28, 2022
Beyond Image to Depth: Improving Depth Prediction using Echoes (CVPR 2021)

Beyond Image to Depth: Improving Depth Prediction using Echoes (CVPR 2021) Kranti Kumar Parida, Siddharth Srivastava, Gaurav Sharma. We address the pr

Kranti Kumar Parida 33 Jun 27, 2022
Two-stage CenterNet

Probabilistic two-stage detection Two-stage object detectors that use class-agnostic one-stage detectors as the proposal network. Probabilistic two-st

Xingyi Zhou 1.1k Jan 03, 2023
Anatomy of Matplotlib -- tutorial developed for the SciPy conference

Introduction This tutorial is a complete re-imagining of how one should teach users the matplotlib library. Hopefully, this tutorial may serve as insp

Matplotlib Developers 1.1k Dec 29, 2022
AdaDM: Enabling Normalization for Image Super-Resolution

AdaDM AdaDM: Enabling Normalization for Image Super-Resolution. You can apply BN, LN or GN in SR networks with our AdaDM. Pretrained models (EDSR*/RDN

58 Jan 08, 2023
ManipNet: Neural Manipulation Synthesis with a Hand-Object Spatial Representation - SIGGRAPH 2021

ManipNet: Neural Manipulation Synthesis with a Hand-Object Spatial Representation - SIGGRAPH 2021 Dataset Code Demos Authors: He Zhang, Yuting Ye, Tak

HE ZHANG 194 Dec 06, 2022
Hcaptcha-challenger - Gracefully face hCaptcha challenge with Yolov5(ONNX) embedded solution

hCaptcha Challenger 🚀 Gracefully face hCaptcha challenge with Yolov5(ONNX) embe

593 Jan 03, 2023
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation.

ENet This work has been published in arXiv: ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation. Packages: train contains too

e-Lab 344 Nov 21, 2022
Investigating Attention Mechanism in 3D Point Cloud Object Detection (arXiv 2021)

Investigating Attention Mechanism in 3D Point Cloud Object Detection (arXiv 2021) This repository is for the following paper: "Investigating Attention

52 Nov 19, 2022
Deep learning (neural network) based remote photoplethysmography: how to extract pulse signal from video using deep learning tools

Deep-rPPG: Camera-based pulse estimation using deep learning tools Deep learning (neural network) based remote photoplethysmography: how to extract pu

Terbe Dániel 138 Dec 17, 2022
Scheme for training and applying a label propagation framework

Factorisation-based Image Labelling Overview This is a scheme for training and applying the factorisation-based image labelling (FIL) framework. Some

Wellcome Centre for Human Neuroimaging 2 Dec 17, 2021
Semi-supervised semantic segmentation needs strong, varied perturbations

Semi-supervised semantic segmentation using CutMix and Colour Augmentation Implementations of our papers: Semi-supervised semantic segmentation needs

146 Dec 20, 2022
This project contains an implemented version of Face Detection using OpenCV and Mediapipe. This is a code snippet and can be used in projects.

Live-Face-Detection Project Description: In this project, we will be using the live video feed from the camera to detect Faces. It will also detect so

Hassan Shahzad 3 Oct 02, 2021
R3Det based on mmdet 2.19.0

R3Det: Refined Single-Stage Detector with Feature Refinement for Rotating Object Installation # install mmdetection first if you haven't installed it

SJTU-Thinklab-Det 38 Dec 15, 2022
An end-to-end implementation of intent prediction with Metaflow and other cool tools

You Don't Need a Bigger Boat An end-to-end (Metaflow-based) implementation of an intent prediction flow for kids who can't MLOps good and wanna learn

Jacopo Tagliabue 614 Dec 31, 2022
[NeurIPS 2021] COCO-LM: Correcting and Contrasting Text Sequences for Language Model Pretraining

COCO-LM This repository contains the scripts for fine-tuning COCO-LM pretrained models on GLUE and SQuAD 2.0 benchmarks. Paper: COCO-LM: Correcting an

Microsoft 106 Dec 12, 2022
Reproducing-BowNet: Learning Representations by Predicting Bags of Visual Words

Reproducing-BowNet Our reproducibility effort based on the 2020 ML Reproducibility Challenge. We are reproducing the results of this CVPR 2020 paper:

6 Mar 16, 2022
A SAT-based sudoku solver

SAT Sudoku solver A SAT-based Sudoku solver made in the context of a small project in the "Logic Problem Solving" class in the first year at the Polyt

Alexandre Malfreyt 5 Apr 15, 2022
This repository contains several image-to-image translation models, whcih were tested for RGB to NIR image generation. The models are Pix2Pix, Pix2PixHD, CycleGAN and PointWise.

RGB2NIR_Experimental This repository contains several image-to-image translation models, whcih were tested for RGB to NIR image generation. The models

5 Jan 04, 2023
FANet - Real-time Semantic Segmentation with Fast Attention

FANet Real-time Semantic Segmentation with Fast Attention Ping Hu, Federico Perazzi, Fabian Caba Heilbron, Oliver Wang, Zhe Lin, Kate Saenko , Stan Sc

Ping Hu 42 Nov 30, 2022