Camera calibration & 3D pose estimation tools for AcinoSet

Related tags

Deep LearningAcinoSet
Overview

AcinoSet: A 3D Pose Estimation Dataset and Baseline Models for Cheetahs in the WildCheetah

Daniel Joska, Liam Clark, Naoya Muramatsu, Ricardo Jericevich, Fred Nicolls, Alexander Mathis, Mackenzie W. Mathis, Amir Patel

AcinoSet is a dataset of free-running cheetahs in the wild that contains 119,490 frames of multi-view synchronized high-speed video footage, camera calibration files and 7,588 human-annotated frames. We utilize markerless animal pose estimation with DeepLabCut to provide 2D keypoints (in the 119K frames). Then, we use three methods that serve as strong baselines for 3D pose estimation tool development: traditional sparse bundle adjustment, an Extended Kalman Filter, and a trajectory optimization-based method we call Full Trajectory Estimation. The resulting 3D trajectories, human-checked 3D ground truth, and an interactive tool to inspect the data is also provided. We believe this dataset will be useful for a diverse range of fields such as ecology, robotics, biomechanics, as well as computer vision.

AcinoSet code by:

Prerequisites

  • Anaconda
  • The dependecies defined in conda_envs/*.yml

What we provide:

The following sections document how this was created by the code within this repo:

Pre-trained DeepLabCut Model:

  • You can use the full_cheetah model provided in the DLC Model Zoo to re-create the existing H5 files (or on new videos).
  • Here, we also already provide the videos and H5 outputs of all frames, here.

Labelling Cheetah Body Positions:

If you want to label more cheetah data, you can also do so within the DeepLabCut framework. We provide a conda file for an easy-install, but please see the repo for installation and instructions for use.

$ conda env create -f conda_envs/DLC.yml -n DLC

AcinoSet Setup:

Navigate to the AcinoSet folder and build the environment:

$ conda env create -f conda_envs/acinoset.yml

Launch Jupyter Lab:

$ jupyter lab

Camera Calibration and 3D Reconstruction:

Intrinsic and Extrinsic Calibration:

Open calib_with_gui.ipynb and follow the instructions.

Alternatively, if the checkerboard points detected in calib_with_gui.ipynb are unsatisfactory, open saveMatlabPointsForAcinoSet.m in MATLAB and follow the instructions. Note that this requires MATLAB 2020b or later.

Optionally: Manually defining the shared points for extrinsic calibration:

You can manually define points on each video in a scene with Argus Clicker. A quick tutorial is found here.

Build the environment:

$ conda env create -f conda_envs/argus.yml

Launch Argus Clicker:

$ python
>>> import argus_gui as ag; ag.ClickerGUI()

Keyboard Shortcuts (See documentation here for more):

  • G ... to a specific frame
  • X ... to switch the sync mode setting the windows to the same frame
  • O ... to bring up the options dialog
  • S ... to bring up a save dialog

Then you must convert the output data from Argus to work with the rest of the pipeline (here is an example):

$ python argus_converter.py \
    --data_dir ../data/2019_03_07/extrinsic_calib/argus_folder

3D Reconstruction:

To reconstruct a cheetah into 3D, we offer three different pose estimation options on top of standard triangulation (TRI):

  • Sparse Bundle Adjustment (SBA)
  • Extended Kalman Filter (EKF)
  • Full Trajectory Estimation (FTE)

You can run each option seperately. For example, simply open FTE.ipynb and follow the instructions! Otherwise, you can run all types of refinements in one go:

python all_optimizations.py --data_dir 2019_03_09/lily/run --start_frame 70 --end_frame 170 --dlc_thresh 0.5

NB: When running the FTE, we recommend that you use the MA86 solver. For details on how to set this up, see these instructions.

Citation

We ask that if you use our code or data, kindly cite (and note it is accepted to ICRA 2021, so please check back for an updated ref):

@misc{joska2021acinoset,
      title={AcinoSet: A 3D Pose Estimation Dataset and Baseline Models for Cheetahs in the Wild}, 
      author={Daniel Joska and Liam Clark and Naoya Muramatsu and Ricardo Jericevich and Fred Nicolls and Alexander Mathis and Mackenzie W. Mathis and Amir Patel},
      year={2021},
      eprint={2103.13282},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
African Robotics Unit
A grouping of robotics researchers at the University of Cape Town who study problems we as Africans are uniquely positioned to solve
African Robotics Unit
Google-drive-to-sqlite - Create a SQLite database containing metadata from Google Drive

google-drive-to-sqlite Create a SQLite database containing metadata from Google

Simon Willison 140 Dec 04, 2022
[NeurIPS 2021] Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data

Near-Duplicate Video Retrieval with Deep Metric Learning This repository contains the Tensorflow implementation of the paper Near-Duplicate Video Retr

Liming Jiang 238 Nov 25, 2022
Official pytorch implementation of "Scaling-up Disentanglement for Image Translation", ICCV 2021.

Official pytorch implementation of "Scaling-up Disentanglement for Image Translation", ICCV 2021.

Aviv Gabbay 41 Nov 29, 2022
AI4Good project for detecting waste in the environment

Detect waste AI4Good project for detecting waste in environment. www.detectwaste.ml. Our latest results were published in Waste Management journal in

108 Dec 25, 2022
Semantic Bottleneck Scene Generation

SB-GAN Semantic Bottleneck Scene Generation Coupling the high-fidelity generation capabilities of label-conditional image synthesis methods with the f

Samaneh Azadi 41 Nov 28, 2022
Trajectory Prediction with Graph-based Dual-scale Context Fusion

DSP: Trajectory Prediction with Graph-based Dual-scale Context Fusion Introduction This is the project page of the paper Lu Zhang, Peiliang Li, Jing C

HKUST Aerial Robotics Group 103 Jan 04, 2023
PURE: End-to-End Relation Extraction

PURE: End-to-End Relation Extraction This repository contains (PyTorch) code and pre-trained models for PURE (the Princeton University Relation Extrac

Princeton Natural Language Processing 657 Jan 09, 2023
Code for LIGA-Stereo Detector, ICCV'21

LIGA-Stereo Introduction This is the official implementation of the paper LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based

Xiaoyang Guo 75 Dec 09, 2022
Code for the CVPR 2021 paper: Understanding Failures of Deep Networks via Robust Feature Extraction

Welcome to Barlow Barlow is a tool for identifying the failure modes for a given neural network. To achieve this, Barlow first creates a group of imag

Sahil Singla 33 Dec 05, 2022
A new data augmentation method for extreme lighting conditions.

Random Shadows and Highlights This repo has the source code for the paper: Random Shadows and Highlights: A new data augmentation method for extreme l

Osama Mazhar 35 Nov 26, 2022
The Most Efficient Temporal Difference Learning Framework for 2048

moporgic/TDL2048+ TDL2048+ is a highly optimized temporal difference (TD) learning framework for 2048. Features Many common methods related to 2048 ar

Hung Guei 5 Nov 23, 2022
4D Human Body Capture from Egocentric Video via 3D Scene Grounding

4D Human Body Capture from Egocentric Video via 3D Scene Grounding [Project] [Paper] Installation: Our method requires the same dependencies as SMPLif

Miao Liu 37 Nov 08, 2022
Dictionary Learning with Uniform Sparse Representations for Anomaly Detection

Dictionary Learning with Uniform Sparse Representations for Anomaly Detection Implementation of the Uniform DL Representation for AD algorithm describ

Paul Irofti 1 Nov 23, 2022
Dynamical Wasserstein Barycenters for Time Series Modeling

Dynamical Wasserstein Barycenters for Time Series Modeling This is the code related for the Dynamical Wasserstein Barycenter model published in Neurip

8 Sep 09, 2022
SpeechNAS Better Trade off between Latency and Accuracy for Large Scale Speaker Verification

SpeechNAS Better Trade off between Latency and Accuracy for Large Scale Speaker Verification

Wentao Zhu 24 May 20, 2022
AAAI 2022: Stationary diffusion state neural estimation

Stationary Diffusion State Neural Estimation Although many graph-based clustering methods attempt to model the stationary diffusion state in their obj

绽琨 33 Nov 24, 2022
f-BRS: Rethinking Backpropagating Refinement for Interactive Segmentation

f-BRS: Rethinking Backpropagating Refinement for Interactive Segmentation [Paper] [PyTorch] [MXNet] [Video] This repository provides code for training

Visual Understanding Lab @ Samsung AI Center Moscow 516 Dec 21, 2022
Principled Detection of Out-of-Distribution Examples in Neural Networks

ODIN: Out-of-Distribution Detector for Neural Networks This is a PyTorch implementation for detecting out-of-distribution examples in neural networks.

189 Nov 29, 2022
Dynamic Graph Event Detection

DyGED Dynamic Graph Event Detection Get Started pip install -r requirements.txt TODO Paper link to arxiv, and how to cite. Twitter Weather dataset tra

Mert Koşan 3 May 09, 2022
Long Expressive Memory (LEM)

Long Expressive Memory for Sequence Modeling This repository contains the implementation to reproduce the numerical experiments of the paper Long Expr

Konstantin Rusch 47 Dec 17, 2022