Camera calibration & 3D pose estimation tools for AcinoSet

Related tags

Deep LearningAcinoSet
Overview

AcinoSet: A 3D Pose Estimation Dataset and Baseline Models for Cheetahs in the WildCheetah

Daniel Joska, Liam Clark, Naoya Muramatsu, Ricardo Jericevich, Fred Nicolls, Alexander Mathis, Mackenzie W. Mathis, Amir Patel

AcinoSet is a dataset of free-running cheetahs in the wild that contains 119,490 frames of multi-view synchronized high-speed video footage, camera calibration files and 7,588 human-annotated frames. We utilize markerless animal pose estimation with DeepLabCut to provide 2D keypoints (in the 119K frames). Then, we use three methods that serve as strong baselines for 3D pose estimation tool development: traditional sparse bundle adjustment, an Extended Kalman Filter, and a trajectory optimization-based method we call Full Trajectory Estimation. The resulting 3D trajectories, human-checked 3D ground truth, and an interactive tool to inspect the data is also provided. We believe this dataset will be useful for a diverse range of fields such as ecology, robotics, biomechanics, as well as computer vision.

AcinoSet code by:

Prerequisites

  • Anaconda
  • The dependecies defined in conda_envs/*.yml

What we provide:

The following sections document how this was created by the code within this repo:

Pre-trained DeepLabCut Model:

  • You can use the full_cheetah model provided in the DLC Model Zoo to re-create the existing H5 files (or on new videos).
  • Here, we also already provide the videos and H5 outputs of all frames, here.

Labelling Cheetah Body Positions:

If you want to label more cheetah data, you can also do so within the DeepLabCut framework. We provide a conda file for an easy-install, but please see the repo for installation and instructions for use.

$ conda env create -f conda_envs/DLC.yml -n DLC

AcinoSet Setup:

Navigate to the AcinoSet folder and build the environment:

$ conda env create -f conda_envs/acinoset.yml

Launch Jupyter Lab:

$ jupyter lab

Camera Calibration and 3D Reconstruction:

Intrinsic and Extrinsic Calibration:

Open calib_with_gui.ipynb and follow the instructions.

Alternatively, if the checkerboard points detected in calib_with_gui.ipynb are unsatisfactory, open saveMatlabPointsForAcinoSet.m in MATLAB and follow the instructions. Note that this requires MATLAB 2020b or later.

Optionally: Manually defining the shared points for extrinsic calibration:

You can manually define points on each video in a scene with Argus Clicker. A quick tutorial is found here.

Build the environment:

$ conda env create -f conda_envs/argus.yml

Launch Argus Clicker:

$ python
>>> import argus_gui as ag; ag.ClickerGUI()

Keyboard Shortcuts (See documentation here for more):

  • G ... to a specific frame
  • X ... to switch the sync mode setting the windows to the same frame
  • O ... to bring up the options dialog
  • S ... to bring up a save dialog

Then you must convert the output data from Argus to work with the rest of the pipeline (here is an example):

$ python argus_converter.py \
    --data_dir ../data/2019_03_07/extrinsic_calib/argus_folder

3D Reconstruction:

To reconstruct a cheetah into 3D, we offer three different pose estimation options on top of standard triangulation (TRI):

  • Sparse Bundle Adjustment (SBA)
  • Extended Kalman Filter (EKF)
  • Full Trajectory Estimation (FTE)

You can run each option seperately. For example, simply open FTE.ipynb and follow the instructions! Otherwise, you can run all types of refinements in one go:

python all_optimizations.py --data_dir 2019_03_09/lily/run --start_frame 70 --end_frame 170 --dlc_thresh 0.5

NB: When running the FTE, we recommend that you use the MA86 solver. For details on how to set this up, see these instructions.

Citation

We ask that if you use our code or data, kindly cite (and note it is accepted to ICRA 2021, so please check back for an updated ref):

@misc{joska2021acinoset,
      title={AcinoSet: A 3D Pose Estimation Dataset and Baseline Models for Cheetahs in the Wild}, 
      author={Daniel Joska and Liam Clark and Naoya Muramatsu and Ricardo Jericevich and Fred Nicolls and Alexander Mathis and Mackenzie W. Mathis and Amir Patel},
      year={2021},
      eprint={2103.13282},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
African Robotics Unit
A grouping of robotics researchers at the University of Cape Town who study problems we as Africans are uniquely positioned to solve
African Robotics Unit
Towards Improving Embedding Based Models of Social Network Alignment via Pseudo Anchors

PSML paper: Towards Improving Embedding Based Models of Social Network Alignment via Pseudo Anchors PSML_IONE,PSML_ABNE,PSML_DEEPLINK,PSML_SNNA: numpy

13 Nov 27, 2022
Some code of the implements of Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network

3D-GMPDCNN Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network PyTorch implementation of "Geological Modeling Usin

5 Nov 21, 2022
A heterogeneous entity-augmented academic language model based on Open Academic Graph (OAG)

Library | Paper | Slack We released two versions of OAG-BERT in CogDL package. OAG-BERT is a heterogeneous entity-augmented academic language model wh

THUDM 58 Dec 17, 2022
This repository compare a selfie with images from identity documents and response if the selfie match.

aws-rekognition-facecompare This repository compare a selfie with images from identity documents and response if the selfie match. This code was made

1 Jan 27, 2022
Official implementation for NIPS'17 paper: PredRNN: Recurrent Neural Networks for Predictive Learning Using Spatiotemporal LSTMs.

PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive Learning The predictive learning of spatiotemporal sequences aims to generate future

THUML: Machine Learning Group @ THSS 243 Dec 26, 2022
Python script that analyses the given datasets and comes up with the best polynomial regression representation with the smallest polynomial degree possible

Python script that analyses the given datasets and comes up with the best polynomial regression representation with the smallest polynomial degree possible, to be the most reliable with the least com

Nikolas B Virionis 2 Aug 01, 2022
A reimplementation of DCGAN in PyTorch

DCGAN in PyTorch A reimplementation of DCGAN in PyTorch. Although there is an abundant source of code and examples found online (as well as an officia

Diego Porres 6 Jan 08, 2022
PyTorch implementation of paper “Unbiased Scene Graph Generation from Biased Training”

A new codebase for popular Scene Graph Generation methods (2020). Visualization & Scene Graph Extraction on custom images/datasets are provided. It's also a PyTorch implementation of paper “Unbiased

Kaihua Tang 824 Jan 03, 2023
A Dying Light 2 (DL2) PAKFile Utility for Modders and Mod Makers.

Dying Light 2 PAKFile Utility A Dying Light 2 (DL2) PAKFile Utility for Modders and Mod Makers. This tool aims to make PAKFile (.pak files) modding a

RHQ Online 12 Aug 26, 2022
Code for HodgeNet: Learning Spectral Geometry on Triangle Meshes, in SIGGRAPH 2021.

HodgeNet | Webpage | Paper | Video HodgeNet: Learning Spectral Geometry on Triangle Meshes Dmitriy Smirnov, Justin Solomon SIGGRAPH 2021 Set-up To ins

Dima Smirnov 61 Nov 27, 2022
This repository contains the source code for the paper "DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks",

DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks Project Page | Video | Presentation | Paper | Data L

Facebook Research 281 Dec 22, 2022
TransZero++: Cross Attribute-guided Transformer for Zero-Shot Learning

TransZero++ This repository contains the testing code for the paper "TransZero++: Cross Attribute-guided Transformer for Zero-Shot Learning" submitted

Shiming Chen 6 Aug 16, 2022
Tutorial to set up TensorFlow Object Detection API on the Raspberry Pi

A tutorial showing how to set up TensorFlow's Object Detection API on the Raspberry Pi

Evan 1.1k Dec 26, 2022
Official Pytorch implementation of "Learning Debiased Representation via Disentangled Feature Augmentation (Neurips 2021, Oral)"

Learning Debiased Representation via Disentangled Feature Augmentation (Neurips 2021, Oral): Official Project Webpage This repository provides the off

Kakao Enterprise Corp. 68 Dec 17, 2022
Graph-based community clustering approach to extract protein domains from a predicted aligned error matrix

Using a predicted aligned error matrix corresponding to an AlphaFold2 model , returns a series of lists of residue indices, where each list corresponds to a set of residues clustering together into a

Tristan Croll 24 Nov 23, 2022
Supplementary code for the experiments described in the 2021 ISMIR submission: Leveraging Hierarchical Structures for Few Shot Musical Instrument Recognition.

Music Trees Supplementary code for the experiments described in the 2021 ISMIR submission: Leveraging Hierarchical Structures for Few Shot Musical Ins

Hugo Flores García 32 Nov 22, 2022
Nicholas Lee 3 Jan 09, 2022
code for EMNLP 2019 paper Text Summarization with Pretrained Encoders

PreSumm This code is for EMNLP 2019 paper Text Summarization with Pretrained Encoders Updates Jan 22 2020: Now you can Summarize Raw Text Input!. Swit

Yang Liu 1.2k Dec 28, 2022
Official Pytorch implementation of Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Representations

Scene Representation Networks This is the official implementation of the NeurIPS submission "Scene Representation Networks: Continuous 3D-Structure-Aw

Vincent Sitzmann 365 Jan 06, 2023
Music library streaming app written in Flask & VueJS

djtaytay This is a little toy app made to explore Vue, brush up on my Python, and make a remote music collection accessable through a web interface. I

Ryan Tasson 6 May 27, 2022