Rot-Pro: Modeling Transitivity by Projection in Knowledge Graph Embedding

Related tags

Deep LearningRot-Pro
Overview

Rot-Pro : Modeling Transitivity by Projection in Knowledge Graph Embedding

This repository contains the source code for the Rot-Pro model, presented at NeurIPS 2021 in the paper.

Requirements

  • Python 3.6+
  • Pytorch 1.1.x

Datasets

The repository includes the FB15-237, WN18RR, YAGO3-10, Counties S1/S2/S3 knowledge graph completion datasets, as well as transitivity subsets of YAGO3-10 mentioned in paper.

Hyper-parameters Usage of Rot-Pro

  • --constrains: set True if expect to constrain the range of parameter a, b to 0 or 1.
  • --init_pr: The percentage of relational rotation phase of (-π, π) when initialization. For example, set to 0.5 to constrain the initial relational rotation phase in (-π/2, π/2)
  • --train_pr: The percentage of relational rotation phase of (-π, π) when training. -- --trans_test: When do link prediction test on transitive set S1/ S2/ S3 on YAGO3-10, set it to the relative file path as "./trans_test/s1.txt"

Training Rot-Pro

This is a command for training a Rot-Pro model on YAGO3-10 dataset with GPU 0.
CUDA_VISIBLE_DEVICES=0 python -u codes/run.py --do_train
--cuda
--do_valid
--do_test
--data_path data/YAGO3-10
--model RotPro
--gamma_m 0.000001 --beta 1.5
-n 400 -b 1024 -d 500 -c True
-g 16.0 -a 1.0 -adv -alpha 0.0005
-lr 0.00005 --max_steps 500000
--warm_up_steps 200000
-save models/RotPro_YAGO3_0 --test_batch_size 4 -de

More details are illustrated in argparse configuration at codes/run.py

Testing Rot-Pro

An example for common link prediction on YAGO3-10. CUDA_VISIBLE_DEVICES=0 python -u codes/run.py
--cuda
--do_test
--data_path data/YAGO3-10
--model RotPro
--init_checkpoint models/RotPro_YAGO3_0 --test_batch_size 4 -de

An example for link prediction test on transitive set S1 on YAGO3-10. CUDA_VISIBLE_DEVICES=0 python -u codes/run.py
--cuda
--do_test
--data_path data/YAGO3-10
--model transRotatE
--trans_test trans_test/s1.txt
--init_checkpoint models/RotPro_YAGO3_0 --test_batch_size 4 -de

Citing this paper

If you make use of this code, or its accompanying paper, please cite this work as follows:

@inproceedings{song2021rotpro,
  title={Rot-Pro: Modeling Transitivity by Projection in Knowledge Graph Embedding},
  author = {Tengwei Song and Jie Luo and Lei Huang},
  booktitle={Proceedings of the Thirty-Fifth Annual Conference on Advances in Neural Information Processing Systems ({NeurIPS})},
  year={2021}
}

Owner
Tewi
Tewi
Experiment about Deep Person Re-identification with EfficientNet-v2

We evaluated the baseline with Resnet50 and Efficienet-v2 without using pretrained models. Also Resnet50-IBN-A and Efficientnet-v2 using pretrained on ImageNet. We used two datasets: Market-1501 and

lan.nguyen2k 77 Jan 03, 2023
A video scene detection algorithm is designed to detect a variety of different scenes within a video

Scene-Change-Detection - A video scene detection algorithm is designed to detect a variety of different scenes within a video. There is a very simple definition for a scene: It is a series of logical

1 Jan 04, 2022
This repository contains the implementation of the paper: Federated Distillation of Natural Language Understanding with Confident Sinkhorns

Federated Distillation of Natural Language Understanding with Confident Sinkhorns This repository provides an alternative method for ensembled distill

Deep Cognition and Language Research (DeCLaRe) Lab 11 Nov 16, 2022
In the case of your data having only 1 channel while want to use timm models

timm_custom Description In the case of your data having only 1 channel while want to use timm models (with or without pretrained weights), run the fol

2 Nov 26, 2021
The first dataset of composite images with rationality score indicating whether the object placement in a composite image is reasonable.

Object-Placement-Assessment-Dataset-OPA Object-Placement-Assessment (OPA) is to verify whether a composite image is plausible in terms of the object p

BCMI 53 Nov 15, 2022
Implementation of "Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner"

Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner This repository is the official implementation of Meta-rPPG: Remote Heart Ra

Eugene Lee 137 Dec 13, 2022
A Simple and Versatile Framework for Object Detection and Instance Recognition

SimpleDet - A Simple and Versatile Framework for Object Detection and Instance Recognition Major Features FP16 training for memory saving and up to 2.

TuSimple 3k Dec 12, 2022
Tutorials, assignments, and competitions for MIT Deep Learning related courses.

MIT Deep Learning This repository is a collection of tutorials for MIT Deep Learning courses. More added as courses progress. Tutorial: Deep Learning

Lex Fridman 9.5k Jan 07, 2023
The codes and models in 'Gaze Estimation using Transformer'.

GazeTR We provide the code of GazeTR-Hybrid in "Gaze Estimation using Transformer". We recommend you to use data processing codes provided in GazeHub.

65 Dec 27, 2022
Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks"

LUNAR Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks" Adam Goodge, Bryan Hooi, Ng See Kiong and

Adam Goodge 25 Dec 28, 2022
Code and data for the EMNLP 2021 paper "Just Say No: Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts". Coming soon!

ToxiChat Code and data for the EMNLP 2021 paper "Just Say No: Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts". Install depen

Ashutosh Baheti 11 Jan 01, 2023
Modifications of the official PyTorch implementation of StyleGAN3. Let's easily generate images and videos with StyleGAN2/2-ADA/3!

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Diego Porres 185 Dec 24, 2022
计算机视觉中用到的注意力模块和其他即插即用模块PyTorch Implementation Collection of Attention Module and Plug&Play Module

PyTorch实现多种计算机视觉中网络设计中用到的Attention机制,还收集了一些即插即用模块。由于能力有限精力有限,可能很多模块并没有包括进来,有任何的建议或者改进,可以提交issue或者进行PR。

PJDong 599 Dec 23, 2022
Efficient semidefinite bounds for multi-label discrete graphical models.

Low rank solvers #################################### benchmark/ : folder with the random instances used in the paper. ############################

1 Dec 08, 2022
Code for the TASLP paper "PSLA: Improving Audio Tagging With Pretraining, Sampling, Labeling, and Aggregation".

PSLA: Improving Audio Tagging with Pretraining, Sampling, Labeling, and Aggregation Introduction Getting Started FSD50K Recipe AudioSet Recipe Label E

Yuan Gong 84 Dec 27, 2022
I-SECRET: Importance-guided fundus image enhancement via semi-supervised contrastive constraining

I-SECRET This is the implementation of the MICCAI 2021 Paper "I-SECRET: Importance-guided fundus image enhancement via semi-supervised contrastive con

13 Dec 02, 2022
Companion code for the paper Theoretical characterization of uncertainty in high-dimensional linear classification

Companion code for the paper Theoretical characterization of uncertainty in high-dimensional linear classification Usage The required packages are lis

0 Feb 07, 2022
HMLLDB is a collection of LLDB commands to assist in the debugging of iOS apps.

HMLLDB is a collection of LLDB commands to assist in the debugging of iOS apps. 中文介绍 Features Non-intrusive. Your iOS project does not need to be modi

mao2020 47 Oct 22, 2022
Model Zoo of BDD100K Dataset

Model Zoo of BDD100K Dataset

ETH VIS Group 200 Dec 27, 2022
Public implementation of "Learning from Suboptimal Demonstration via Self-Supervised Reward Regression" from CoRL'21

Self-Supervised Reward Regression (SSRR) Codebase for CoRL 2021 paper "Learning from Suboptimal Demonstration via Self-Supervised Reward Regression "

19 Dec 12, 2022