Rot-Pro: Modeling Transitivity by Projection in Knowledge Graph Embedding

Related tags

Deep LearningRot-Pro
Overview

Rot-Pro : Modeling Transitivity by Projection in Knowledge Graph Embedding

This repository contains the source code for the Rot-Pro model, presented at NeurIPS 2021 in the paper.

Requirements

  • Python 3.6+
  • Pytorch 1.1.x

Datasets

The repository includes the FB15-237, WN18RR, YAGO3-10, Counties S1/S2/S3 knowledge graph completion datasets, as well as transitivity subsets of YAGO3-10 mentioned in paper.

Hyper-parameters Usage of Rot-Pro

  • --constrains: set True if expect to constrain the range of parameter a, b to 0 or 1.
  • --init_pr: The percentage of relational rotation phase of (-π, π) when initialization. For example, set to 0.5 to constrain the initial relational rotation phase in (-π/2, π/2)
  • --train_pr: The percentage of relational rotation phase of (-π, π) when training. -- --trans_test: When do link prediction test on transitive set S1/ S2/ S3 on YAGO3-10, set it to the relative file path as "./trans_test/s1.txt"

Training Rot-Pro

This is a command for training a Rot-Pro model on YAGO3-10 dataset with GPU 0.
CUDA_VISIBLE_DEVICES=0 python -u codes/run.py --do_train
--cuda
--do_valid
--do_test
--data_path data/YAGO3-10
--model RotPro
--gamma_m 0.000001 --beta 1.5
-n 400 -b 1024 -d 500 -c True
-g 16.0 -a 1.0 -adv -alpha 0.0005
-lr 0.00005 --max_steps 500000
--warm_up_steps 200000
-save models/RotPro_YAGO3_0 --test_batch_size 4 -de

More details are illustrated in argparse configuration at codes/run.py

Testing Rot-Pro

An example for common link prediction on YAGO3-10. CUDA_VISIBLE_DEVICES=0 python -u codes/run.py
--cuda
--do_test
--data_path data/YAGO3-10
--model RotPro
--init_checkpoint models/RotPro_YAGO3_0 --test_batch_size 4 -de

An example for link prediction test on transitive set S1 on YAGO3-10. CUDA_VISIBLE_DEVICES=0 python -u codes/run.py
--cuda
--do_test
--data_path data/YAGO3-10
--model transRotatE
--trans_test trans_test/s1.txt
--init_checkpoint models/RotPro_YAGO3_0 --test_batch_size 4 -de

Citing this paper

If you make use of this code, or its accompanying paper, please cite this work as follows:

@inproceedings{song2021rotpro,
  title={Rot-Pro: Modeling Transitivity by Projection in Knowledge Graph Embedding},
  author = {Tengwei Song and Jie Luo and Lei Huang},
  booktitle={Proceedings of the Thirty-Fifth Annual Conference on Advances in Neural Information Processing Systems ({NeurIPS})},
  year={2021}
}

Owner
Tewi
Tewi
Local Attention - Flax module for Jax

Local Attention - Flax Autoregressive Local Attention - Flax module for Jax Install $ pip install local-attention-flax Usage from jax import random fr

Phil Wang 16 Jun 16, 2022
[CVPR'21] MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation

MonoRUn MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation. CVPR 2021. [paper] Hansheng Chen, Yuyao Huang, Wei Tian*

同济大学智能汽车研究所综合感知研究组 ( Comprehensive Perception Research Group under Institute of Intelligent Vehicles, School of Automotive Studies, Tongji University) 96 Dec 10, 2022
The official implementation of paper Siamese Transformer Pyramid Networks for Real-Time UAV Tracking, accepted by WACV22

SiamTPN Introduction This is the official implementation of the SiamTPN (WACV2022). The tracker intergrates pyramid feature network and transformer in

Robotics and Intelligent Systems Control @ NYUAD 29 Jan 08, 2023
:boar: :bear: Deep Learning based Python Library for Stock Market Prediction and Modelling

bulbea "Deep Learning based Python Library for Stock Market Prediction and Modelling." Table of Contents Installation Usage Documentation Dependencies

Achilles Rasquinha 1.8k Jan 05, 2023
CTF challenges and write-ups for MicroCTF 2021.

MicroCTF 2021 Qualifications About This repository contains CTF challenges and official write-ups for MicroCTF 2021 Qualifications. License Distribute

Shellmates 12 Dec 27, 2022
Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning

Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning This is the code for implementing the MADDPG algorithm presented in

97 Dec 21, 2022
This repo provides the base code for pytorch-lightning and weight and biases simultaneous integration.

Write your model faster with pytorch-lightning-wadb-code-backbone This repository provides the base code for pytorch-lightning and weight and biases s

9 Mar 29, 2022
A Deep Learning based project for creating line art portraits.

ArtLine The main aim of the project is to create amazing line art portraits. Sounds Intresting,let's get to the pictures!! Model-(Smooth) Model-(Quali

Vijish Madhavan 3.3k Jan 07, 2023
Neural Dynamic Policies for End-to-End Sensorimotor Learning

This is a PyTorch based implementation for our NeurIPS 2020 paper on Neural Dynamic Policies for end-to-end sensorimotor learning.

Shikhar Bahl 47 Dec 11, 2022
pytorch implementation of dftd2 & dftd3

torch-dftd pytorch implementation of dftd2 [1] & dftd3 [2, 3] Install # Install from pypi pip install torch-dftd # Install from source (for developer

33 Nov 28, 2022
Repo for CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning

CReST in Tensorflow 2 Code for the paper: "CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning" by Chen Wei, Ki

Google Research 75 Nov 01, 2022
Official repo for SemanticGAN https://nv-tlabs.github.io/semanticGAN/

SemanticGAN This is the official code for: Semantic Segmentation with Generative Models: Semi-Supervised Learning and Strong Out-of-Domain Generalizat

151 Dec 28, 2022
The implementation of "Optimizing Shoulder to Shoulder: A Coordinated Sub-Band Fusion Model for Real-Time Full-Band Speech Enhancement"

SF-Net for fullband SE This is the repo of the manuscript "Optimizing Shoulder to Shoulder: A Coordinated Sub-Band Fusion Model for Real-Time Full-Ban

Guochen Yu 36 Dec 02, 2022
Code for testing various M1 Chip benchmarks with TensorFlow.

M1, M1 Pro, M1 Max Machine Learning Speed Test Comparison This repo contains some sample code to benchmark the new M1 MacBooks (M1 Pro and M1 Max) aga

Daniel Bourke 348 Jan 04, 2023
The implementation of FOLD-R++ algorithm

FOLD-R-PP The implementation of FOLD-R++ algorithm. The target of FOLD-R++ algorithm is to learn an answer set program for a classification task. Inst

13 Dec 23, 2022
SSPNet: Scale Selection Pyramid Network for Tiny Person Detection from UAV Images.

SSPNet: Scale Selection Pyramid Network for Tiny Person Detection from UAV Images (IEEE GRSL 2021) Code (based on mmdetection) for SSPNet: Scale Selec

Italian Cannon 37 Dec 28, 2022
Learning to Predict Gradients for Semi-Supervised Continual Learning

Learning to Predict Gradients for Semi-Supervised Continual Learning Code for project: "Learning to Predict Gradients for Semi-Supervised Continual Le

Yan Luo 2 Mar 05, 2022
This is the pytorch implementation for the paper: *Learning Accurate Performance Predictors for Ultrafast Automated Model Compression*, which is in submission to TPAMI

SeerNet This is the pytorch implementation for the paper: Learning Accurate Performance Predictors for Ultrafast Automated Model Compression, which is

3 May 01, 2022
A curated list of awesome deep long-tailed learning resources.

A curated list of awesome deep long-tailed learning resources.

vanint 210 Dec 25, 2022
Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions

Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions Usage Clone the code to local. https://github.com/tanlab/MI

Computational Biology and Machine Learning lab @ TOBB ETU 3 Oct 18, 2022