Rot-Pro: Modeling Transitivity by Projection in Knowledge Graph Embedding

Related tags

Deep LearningRot-Pro
Overview

Rot-Pro : Modeling Transitivity by Projection in Knowledge Graph Embedding

This repository contains the source code for the Rot-Pro model, presented at NeurIPS 2021 in the paper.

Requirements

  • Python 3.6+
  • Pytorch 1.1.x

Datasets

The repository includes the FB15-237, WN18RR, YAGO3-10, Counties S1/S2/S3 knowledge graph completion datasets, as well as transitivity subsets of YAGO3-10 mentioned in paper.

Hyper-parameters Usage of Rot-Pro

  • --constrains: set True if expect to constrain the range of parameter a, b to 0 or 1.
  • --init_pr: The percentage of relational rotation phase of (-π, π) when initialization. For example, set to 0.5 to constrain the initial relational rotation phase in (-π/2, π/2)
  • --train_pr: The percentage of relational rotation phase of (-π, π) when training. -- --trans_test: When do link prediction test on transitive set S1/ S2/ S3 on YAGO3-10, set it to the relative file path as "./trans_test/s1.txt"

Training Rot-Pro

This is a command for training a Rot-Pro model on YAGO3-10 dataset with GPU 0.
CUDA_VISIBLE_DEVICES=0 python -u codes/run.py --do_train
--cuda
--do_valid
--do_test
--data_path data/YAGO3-10
--model RotPro
--gamma_m 0.000001 --beta 1.5
-n 400 -b 1024 -d 500 -c True
-g 16.0 -a 1.0 -adv -alpha 0.0005
-lr 0.00005 --max_steps 500000
--warm_up_steps 200000
-save models/RotPro_YAGO3_0 --test_batch_size 4 -de

More details are illustrated in argparse configuration at codes/run.py

Testing Rot-Pro

An example for common link prediction on YAGO3-10. CUDA_VISIBLE_DEVICES=0 python -u codes/run.py
--cuda
--do_test
--data_path data/YAGO3-10
--model RotPro
--init_checkpoint models/RotPro_YAGO3_0 --test_batch_size 4 -de

An example for link prediction test on transitive set S1 on YAGO3-10. CUDA_VISIBLE_DEVICES=0 python -u codes/run.py
--cuda
--do_test
--data_path data/YAGO3-10
--model transRotatE
--trans_test trans_test/s1.txt
--init_checkpoint models/RotPro_YAGO3_0 --test_batch_size 4 -de

Citing this paper

If you make use of this code, or its accompanying paper, please cite this work as follows:

@inproceedings{song2021rotpro,
  title={Rot-Pro: Modeling Transitivity by Projection in Knowledge Graph Embedding},
  author = {Tengwei Song and Jie Luo and Lei Huang},
  booktitle={Proceedings of the Thirty-Fifth Annual Conference on Advances in Neural Information Processing Systems ({NeurIPS})},
  year={2021}
}

Owner
Tewi
Tewi
🐦 Opytimizer is a Python library consisting of meta-heuristic optimization techniques.

Opytimizer: A Nature-Inspired Python Optimizer Welcome to Opytimizer. Did you ever reach a bottleneck in your computational experiments? Are you tired

Gustavo Rosa 546 Dec 31, 2022
YOLO-v5 기반 단안 카메라의 영상을 활용해 차간 거리를 일정하게 유지하며 주행하는 Adaptive Cruise Control 기능 구현

자율 주행차의 영상 기반 차간거리 유지 개발 Table of Contents 프로젝트 소개 주요 기능 시스템 구조 디렉토리 구조 결과 실행 방법 참조 팀원 프로젝트 소개 YOLO-v5 기반으로 단안 카메라의 영상을 활용해 차간 거리를 일정하게 유지하며 주행하는 Adap

14 Jun 29, 2022
Code for the paper "Attention Approximates Sparse Distributed Memory"

Attention Approximates Sparse Distributed Memory - Codebase This is all of the code used to run analyses in the paper "Attention Approximates Sparse D

Trenton Bricken 14 Dec 05, 2022
Pytorch implementation of "Geometrically Adaptive Dictionary Attack on Face Recognition" (WACV 2022)

Geometrically Adaptive Dictionary Attack on Face Recognition This is the Pytorch code of our paper "Geometrically Adaptive Dictionary Attack on Face R

6 Nov 21, 2022
buildseg is a building extraction plugin of QGIS based on PaddlePaddle.

buildseg buildseg is a Building Extraction plugin for QGIS based on PaddlePaddle. How to use Download and install QGIS and clone the repo : git clone

39 Dec 09, 2022
Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study.

APR The repo for the paper Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study. Environment setu

ielab 8 Nov 26, 2022
Pytorch implementation of ICASSP 2022 paper Attention Probe: Vision Transformer Distillation in the Wild

Attention Probe: Vision Transformer Distillation in the Wild Jiahao Wang, Mingdeng Cao, Shuwei Shi, Baoyuan Wu, Yujiu Yang In ICASSP 2022 This code is

IIGROUP 6 Sep 21, 2022
Caffe models in TensorFlow

Caffe to TensorFlow Convert Caffe models to TensorFlow. Usage Run convert.py to convert an existing Caffe model to TensorFlow. Make sure you're using

Saumitro Dasgupta 2.8k Dec 31, 2022
Power Core Simulator!

Power Core Simulator Power Core Simulator is a simulator based off the Roblox game "Pinewood Builders Computer Core". In this simulator, you can choos

BananaJeans 1 Nov 13, 2021
Official Implementation of VAT

Semantic correspondence Few-shot segmentation Cost Aggregation Is All You Need for Few-Shot Segmentation For more information, check out project [Proj

Hamacojr 114 Dec 27, 2022
Repository for benchmarking graph neural networks

Benchmarking Graph Neural Networks Updates Nov 2, 2020 Project based on DGL 0.4.2. See the relevant dependencies defined in the environment yml files

NTU Graph Deep Learning Lab 2k Jan 03, 2023
PyTorch implementation of the cross-modality generative model that synthesizes dance from music.

Dancing to Music PyTorch implementation of the cross-modality generative model that synthesizes dance from music. Paper Hsin-Ying Lee, Xiaodong Yang,

NVIDIA Research Projects 485 Dec 26, 2022
(Preprint) Official PyTorch implementation of "How Do Vision Transformers Work?"

(Preprint) Official PyTorch implementation of "How Do Vision Transformers Work?"

xxxnell 656 Dec 30, 2022
DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language Models

DSEE Codes for [Preprint] DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language Models Xuxi Chen, Tianlong Chen, Yu Cheng, Weizhu Ch

VITA 4 Dec 27, 2021
BEAMetrics: Benchmark to Evaluate Automatic Metrics in Natural Language Generation

BEAMetrics: Benchmark to Evaluate Automatic Metrics in Natural Language Generation Installing The Dependencies $ conda create --name beametrics python

7 Jul 04, 2022
The official start-up code for paper "FFA-IR: Towards an Explainable and Reliable Medical Report Generation Benchmark."

FFA-IR The official start-up code for paper "FFA-IR: Towards an Explainable and Reliable Medical Report Generation Benchmark." The framework is inheri

Mingjie 28 Dec 16, 2022
Official implementation of "Learning Forward Dynamics Model and Informed Trajectory Sampler for Safe Quadruped Navigation" (RSS 2022)

Intro Official implementation of "Learning Forward Dynamics Model and Informed Trajectory Sampler for Safe Quadruped Navigation" Robotics:Science and

Yunho Kim 21 Dec 07, 2022
Compact Bidirectional Transformer for Image Captioning

Compact Bidirectional Transformer for Image Captioning Requirements Python 3.8 Pytorch 1.6 lmdb h5py tensorboardX Prepare Data Please use git clone --

YE Zhou 19 Dec 12, 2022
Hysterese plugin with two temperature offset areas

craftbeerpi4 plugin OffsetHysterese Temperatur-Steuerungs-Plugin mit zwei tempereaturbereich abhängigen Offsets. Installation sudo pip3 install https:

HappyHibo 1 Dec 21, 2021
Official git for "CTAB-GAN: Effective Table Data Synthesizing"

CTAB-GAN This is the official git paper CTAB-GAN: Effective Table Data Synthesizing. The paper is published on Asian Conference on Machine Learning (A

30 Dec 26, 2022