A Simple and Versatile Framework for Object Detection and Instance Recognition

Overview

SimpleDet - A Simple and Versatile Framework for Object Detection and Instance Recognition

Major Features

  • FP16 training for memory saving and up to 2.5X acceleration
  • Highly scalable distributed training available out of box
  • Full coverage of state-of-the-art models including FasterRCNN, MaskRCNN, CascadeRCNN, RetinaNet, DCNv1/v2, TridentNet, NASFPN , EfficientNet, and Knowledge Distillation
  • Extensive feature set including large batch BN, loss synchronization, automatic BN fusion, soft NMS, multi-scale train/test
  • Modular design for coding-free exploration of new experiment settings
  • Extensive documentations including annotated config, Fintuning Guide

Recent Updates

  • Add RPN test (2019.05.28)
  • Add NASFPN (2019.06.04)
  • Add new ResNetV1b baselines from GluonCV (2019.06.07)
  • Add Cascade R-CNN with FPN backbone (2019.06.11)
  • Speed up FPN up to 70% (2019.06.16)
  • Update NASFPN to include larger models (2019.07.01)
  • Automatic BN fusion for fixed BN training, saving up to 50% GPU memory (2019.07.04)
  • Speed up MaskRCNN by 80% (2019.07.23)
  • Update MaskRCNN baselines (2019.07.25)
  • Add EfficientNet and DCN (2019.08.06)
  • Add python wheel for easy local installation (2019.08.20)
  • Add FitNet based Knowledge Distill (2019.08.27)
  • Add SE and train from scratch (2019.08.30)
  • Add a lot of docs (2019.09.03)
  • Add support for INT8 training(contributed by Xiaotao Chen & Jingqiu Zhou) (2019.10.24)
  • Add support for FCOS(contributed by Zhen Wei) (2019.11)
  • Add support for Mask Scoring RCNN(contributed by Zehui Chen) (2019.12)
  • Add support for RepPoints(contributed by Bo Ke) (2020.02)
  • Add support for FreeAnchor (2020.03)
  • Add support for Feature Pyramid Grids & PAFPN (2020.06)
  • Add support for CrowdHuman Dataset (2020.06)
  • Add support for Double Pred (2020.06)
  • Add support for SEPC(contributed by Qiaofei Li) (2020.07)

Setup

All-in-one Script

We provide a setup script for install simpledet and preppare the coco dataset. If you use this script, you can skip to the Quick Start.

Install

We provide a conda installation here for Debian/Ubuntu system. To use a pre-built docker or singularity images, please refer to INSTALL.md for more information.

# install dependency
sudo apt update && sudo apt install -y git wget make python3-dev libglib2.0-0 libsm6 libxext6 libxrender-dev unzip

# create conda env
conda create -n simpledet python=3.7
conda activate simpledet

# fetch CUDA environment
conda install cudatoolkit=10.1

# install python dependency
pip install 'matplotlib<3.1' opencv-python pytz

# download and intall pre-built wheel for CUDA 10.1
pip install https://1dv.aflat.top/mxnet_cu101-1.6.0b20191214-py2.py3-none-manylinux1_x86_64.whl

# install pycocotools
pip install 'git+https://github.com/RogerChern/cocoapi.git#subdirectory=PythonAPI'

# install mxnext, a wrapper around MXNet symbolic API
pip install 'git+https://github.com/RogerChern/mxnext#egg=mxnext'

# get simpledet
git clone https://github.com/tusimple/simpledet
cd simpledet
make

# test simpledet installation
mkdir -p experiments/faster_r50v1_fpn_1x
python detection_infer_speed.py --config config/faster_r50v1_fpn_1x.py --shape 800 1333

If the last line execute successfully, the average running speed of Faster R-CNN R-50 FPN will be reported. And you have successfuly setup SimpleDet. Now you can head up to the next section to prepare your dataset.

Preparing Data

We provide a step by step preparation for the COCO dataset below.

cd simpledet

# make data dir
mkdir -p data/coco/images data/src

# skip this if you have the zip files
wget -c http://images.cocodataset.org/zips/train2017.zip -O data/src/train2017.zip
wget -c http://images.cocodataset.org/zips/val2017.zip -O data/src/val2017.zip
wget -c http://images.cocodataset.org/zips/test2017.zip -O data/src/test2017.zip
wget -c http://images.cocodataset.org/annotations/annotations_trainval2017.zip -O data/src/annotations_trainval2017.zip
wget -c http://images.cocodataset.org/annotations/image_info_test2017.zip -O data/src/image_info_test2017.zip

unzip data/src/train2017.zip -d data/coco/images
unzip data/src/val2017.zip -d data/coco/images
unzip data/src/test2017.zip -d data/coco/images
unzip data/src/annotations_trainval2017.zip -d data/coco
unzip data/src/image_info_test2017.zip -d data/coco

python utils/create_coco_roidb.py --dataset coco --dataset-split train2017
python utils/create_coco_roidb.py --dataset coco --dataset-split val2017
python utils/create_coco_roidb.py --dataset coco --dataset-split test-dev2017

For other datasets or your own data, please check DATASET.md for more details.

Quick Start

# train
python detection_train.py --config config/faster_r50v1_fpn_1x.py

# test
python detection_test.py --config config/faster_r50v1_fpn_1x.py

Finetune

Please check FINTUNE.md

Model Zoo

Please refer to MODEL_ZOO.md for available models

Distributed Training

Please refer to DISTRIBUTED.md

Project Organization

Code Structure

detection_train.py
detection_test.py
config/
    detection_config.py
core/
    detection_input.py
    detection_metric.py
    detection_module.py
models/
    FPN/
    tridentnet/
    maskrcnn/
    cascade_rcnn/
    retinanet/
mxnext/
symbol/
    builder.py

Config

Everything is configurable from the config file, all the changes should be out of source.

Experiments

One experiment is a directory in experiments folder with the same name as the config file.

E.g. r50_fixbn_1x.py is the name of a config file

config/
    r50_fixbn_1x.py
experiments/
    r50_fixbn_1x/
        checkpoint.params
        log.txt
        coco_minival2014_result.json

Models

The models directory contains SOTA models implemented in SimpletDet.

How is Faster R-CNN built

Faster R-CNN

Simpledet supports many popular detection methods and here we take Faster R-CNN as a typical example to show how a detector is built.

  • Preprocessing. The preprocessing methods of the detector is implemented through DetectionAugmentation.
    • Image/bbox-related preprocessing, such as Norm2DImage and Resize2DImageBbox.
    • Anchor generator AnchorTarget2D, which generates anchors and corresponding anchor targets for training RPN.
  • Network Structure. The training and testing symbols of Faster-RCNN detector is defined in FasterRcnn. The key components are listed as follow:
    • Backbone. Backbone provides interfaces to build backbone networks, e.g. ResNet and ResNext.
    • Neck. Neck provides interfaces to build complementary feature extraction layers for backbone networks, e.g. FPNNeck builds Top-down pathway for Feature Pyramid Network.
    • RPN head. RpnHead aims to build classification and regression layers to generate proposal outputs for RPN. Meanwhile, it also provides interplace to generate sampled proposals for the subsequent R-CNN.
    • Roi Extractor. RoiExtractor extracts features for each roi (proposal) based on the R-CNN features generated by Backbone and Neck.
    • Bounding Box Head. BboxHead builds the R-CNN layers for proposal refinement.

How to build a custom detector

The flexibility of simpledet framework makes it easy to build different detectors. We take TridentNet as an example to demonstrate how to build a custom detector simply based on the Faster R-CNN framework.

  • Preprocessing. The additional processing methods could be provided accordingly by inheriting from DetectionAugmentation.
    • In TridentNet, a new TridentAnchorTarget2D is implemented to generate anchors for multiple branches and filter anchors for scale-aware training scheme.
  • Network Structure. The new network structure could be constructed easily for a custom detector by modifying some required components as needed and
    • For TridentNet, we build trident blocks in the Backbone according to the descriptions in the paper. We also provide a TridentRpnHead to generate filtered proposals in RPN to implement the scale-aware scheme. Other components are shared the same with original Faster-RCNN.

Contributors

Yuntao Chen, Chenxia Han, Yanghao Li, Zehao Huang, Naiyan Wang, Xiaotao Chen, Jingqiu Zhou, Zhen Wei, Zehui Chen, Zhaoxiang Zhang, Bo Ke

License and Citation

This project is release under the Apache 2.0 license for non-commercial usage. For commercial usage, please contact us for another license.

If you find our project helpful, please consider cite our tech report.

@article{JMLR:v20:19-205,
  author  = {Yuntao Chen and Chenxia Han and Yanghao Li and Zehao Huang and Yi Jiang and Naiyan Wang and Zhaoxiang Zhang},
  title   = {SimpleDet: A Simple and Versatile Distributed Framework for Object Detection and Instance Recognition},
  journal = {Journal of Machine Learning Research},
  year    = {2019},
  volume  = {20},
  number  = {156},
  pages   = {1-8},
  url     = {http://jmlr.org/papers/v20/19-205.html}
}
Owner
TuSimple
The Future of Trucking
TuSimple
Official implementation of "Dynamic Anchor Learning for Arbitrary-Oriented Object Detection" (AAAI2021).

DAL This project hosts the official implementation for our AAAI 2021 paper: Dynamic Anchor Learning for Arbitrary-Oriented Object Detection [arxiv] [c

ming71 215 Nov 28, 2022
Provide baselines and evaluation metrics of the task: traffic flow prediction

Note: This repo is adpoted from https://github.com/UNIMIBInside/Smart-Mobility-Prediction. Due to technical reasons, I did not fork their code. Introd

Zhangzhi Peng 11 Nov 02, 2022
Sub-tomogram-Detection - Deep learning based model for Cyro ET Sub-tomogram-Detection

Deep learning based model for Cyro ET Sub-tomogram-Detection High degree of stru

Siddhant Kumar 2 Feb 04, 2022
Using Language Model to Bootstrap Human Activity Recognition Ambient Sensors Based in Smart Homes

Using Language Model to Bootstrap Human Activity Recognition Ambient Sensors Based in Smart Homes This repository is the official implementation of Us

Damien Bouchabou 0 Oct 18, 2021
Gans-in-action - Companion repository to GANs in Action: Deep learning with Generative Adversarial Networks

GANs in Action by Jakub Langr and Vladimir Bok List of available code: Chapter 2: Colab, Notebook Chapter 3: Notebook Chapter 4: Notebook Chapter 6: C

GANs in Action 914 Dec 21, 2022
Background Matting: The World is Your Green Screen

Background Matting: The World is Your Green Screen By Soumyadip Sengupta, Vivek Jayaram, Brian Curless, Steve Seitz, and Ira Kemelmacher-Shlizerman Th

Soumyadip Sengupta 4.6k Jan 04, 2023
MaRS - a recursive filtering framework that allows for truly modular multi-sensor integration

The Modular and Robust State-Estimation Framework, or short, MaRS, is a recursive filtering framework that allows for truly modular multi-sensor integration

Control of Networked Systems - University of Klagenfurt 143 Dec 29, 2022
PyTorch and GPyTorch implementation of the paper "Conditioning Sparse Variational Gaussian Processes for Online Decision-making."

Conditioning Sparse Variational Gaussian Processes for Online Decision-making This repository contains a PyTorch and GPyTorch implementation of the pa

Wesley Maddox 16 Dec 08, 2022
[ICCV 2021] A Simple Baseline for Semi-supervised Semantic Segmentation with Strong Data Augmentation

[ICCV 2021] A Simple Baseline for Semi-supervised Semantic Segmentation with Strong Data Augmentation

CodingMan 45 Dec 12, 2022
[Link]deep_portfolo - Use Reforcemet earg ad Supervsed learg to Optmze portfolo allocato []

rl_portfolio This Repository uses Reinforcement Learning and Supervised learning to Optimize portfolio allocation. The goal is to make profitable agen

Deepender Singla 165 Dec 02, 2022
Code for "Intra-hour Photovoltaic Generation Forecasting based on Multi-source Data and Deep Learning Methods."

pv_predict_unet-lstm Code for "Intra-hour Photovoltaic Generation Forecasting based on Multi-source Data and Deep Learning Methods." IEEE Transactions

FolkScientistInDL 8 Oct 08, 2022
A pure PyTorch batched computation implementation of "CIF: Continuous Integrate-and-Fire for End-to-End Speech Recognition"

A pure PyTorch batched computation implementation of "CIF: Continuous Integrate-and-Fire for End-to-End Speech Recognition"

張致強 14 Dec 02, 2022
Unofficial implementation of "TTNet: Real-time temporal and spatial video analysis of table tennis" (CVPR 2020)

TTNet-Pytorch The implementation for the paper "TTNet: Real-time temporal and spatial video analysis of table tennis" An introduction of the project c

Nguyen Mau Dung 438 Dec 29, 2022
Code and datasets for the paper "Combining Events and Frames using Recurrent Asynchronous Multimodal Networks for Monocular Depth Prediction" (RA-L, 2021)

Combining Events and Frames using Recurrent Asynchronous Multimodal Networks for Monocular Depth Prediction This is the code for the paper Combining E

Robotics and Perception Group 69 Dec 26, 2022
Package for working with hypernetworks in PyTorch.

Package for working with hypernetworks in PyTorch.

Christian Henning 71 Jan 05, 2023
Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation

Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation Introduction This is a PyTorch

XMed-Lab 30 Sep 23, 2022
TensorFlow implementation of "Variational Inference with Normalizing Flows"

[TensorFlow 2] Variational Inference with Normalizing Flows TensorFlow implementation of "Variational Inference with Normalizing Flows" [1] Concept Co

YeongHyeon Park 7 Jun 08, 2022
ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS.

ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS. It currently supports four examples for you to quickly experience the power of ONNX Runti

Microsoft 58 Dec 18, 2022
ICON: Implicit Clothed humans Obtained from Normals

ICON: Implicit Clothed humans Obtained from Normals arXiv, December 2021. Yuliang Xiu · Jinlong Yang · Dimitrios Tzionas · Michael J. Black Table of C

Yuliang Xiu 1.1k Dec 30, 2022
a project for 3D multi-object tracking

a project for 3D multi-object tracking

155 Jan 04, 2023