VoxHRNet - Whole Brain Segmentation with Full Volume Neural Network

Related tags

Deep LearningVoxHRNet
Overview

VoxHRNet

This is the official implementation of the following paper:

Whole Brain Segmentation with Full Volume Neural Network

Yeshu Li, Jonathan Cui, Yilun Sheng, Xiao Liang, Jingdong Wang, Eric I-Chao Chang, Yan Xu

Computerized Medical Imaging and Graphics

[arXiv]

Network

architecture

Installation

The following environments/libraries are required:

  • Python 3
  • yacs
  • SimpleITK
  • apex
  • pytorch
  • nibabel
  • numpy
  • scikit-image
  • scipy

Quick Start

Data Preparation

Download the LPBA40 and Hammers n30r95 datasets.

After renaming, your directory tree should look like:

$ROOT
├── data
│   └── LPBA40_N4_RN
│       ├── aseg_TEST001.nii.gz
│       ├── ...
│       ├── aseg_TEST010.nii.gz
│       ├── aseg_TRAIN001.nii.gz
│       ├── ...
│       ├── aseg_TRAIN027.nii.gz
│       ├── aseg_VALIDATE001.nii.gz
│       ├── ...
│       ├── aseg_VALIDATE003.nii.gz
│       ├── orig_TEST001.nii.gz
│       ├── ...
│       ├── orig_TEST010.nii.gz
│       ├── orig_TRAIN001.nii.gz
│       ├── ...
│       ├── orig_TRAIN027.nii.gz
│       ├── orig_VALIDATE001.nii.gz
│       ├── ...
│       └── orig_VALIDATE003.nii.gz
└── VoxHRNet
    ├── voxhrnet.py
    ├── ...
    └── train.py

Create a YACS configuration file and make changes for specific training/test settings accordingly. We use config_lpba.yaml as an example as follows.

Train

Run

python3 train.py --cfg config_lpba.yaml

Test

Run

python3 test.py --cfg config_lpba.yaml

Pretrained Models

For the LPBA40 dataset, we number the subjects from 1-40 alphabetically and split them into 4 folds sequentially. The k-th fold is selected as the test set in the k-th split.

For the Hammers n30r95 dataset, the first 20 subjects and last 10 subjects are chosen as the training and test set respectively.

Their pretrained models can be found in the release page of this repository.

Citation

Please cite our work if you find it useful in your research:

@article{LI2021101991,
title = {Whole brain segmentation with full volume neural network},
journal = {Computerized Medical Imaging and Graphics},
volume = {93},
pages = {101991},
year = {2021},
issn = {0895-6111},
doi = {https://doi.org/10.1016/j.compmedimag.2021.101991},
url = {https://www.sciencedirect.com/science/article/pii/S0895611121001403},
author = {Yeshu Li and Jonathan Cui and Yilun Sheng and Xiao Liang and Jingdong Wang and Eric I.-Chao Chang and Yan Xu},
keywords = {Brain, Segmentation, Neural networks, Deep learning},
abstract = {Whole brain segmentation is an important neuroimaging task that segments the whole brain volume into anatomically labeled regions-of-interest. Convolutional neural networks have demonstrated good performance in this task. Existing solutions, usually segment the brain image by classifying the voxels, or labeling the slices or the sub-volumes separately. Their representation learning is based on parts of the whole volume whereas their labeling result is produced by aggregation of partial segmentation. Learning and inference with incomplete information could lead to sub-optimal final segmentation result. To address these issues, we propose to adopt a full volume framework, which feeds the full volume brain image into the segmentation network and directly outputs the segmentation result for the whole brain volume. The framework makes use of complete information in each volume and can be implemented easily. An effective instance in this framework is given subsequently. We adopt the 3D high-resolution network (HRNet) for learning spatially fine-grained representations and the mixed precision training scheme for memory-efficient training. Extensive experiment results on a publicly available 3D MRI brain dataset show that our proposed model advances the state-of-the-art methods in terms of segmentation performance.}
}

Acknowledgement

A large part of the code is borrowed from HRNet.

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

You might also like...
BraTs-VNet - BraTS(Brain Tumour Segmentation) using V-Net
BraTs-VNet - BraTS(Brain Tumour Segmentation) using V-Net

BraTS(Brain Tumour Segmentation) using V-Net This project is an approach to dete

Recovering Brain Structure Network Using Functional Connectivity
Recovering Brain Structure Network Using Functional Connectivity

Recovering-Brain-Structure-Network-Using-Functional-Connectivity Framework: Papers: This repository provides a PyTorch implementation of the models ad

PyZebrascope - an open-source Python platform for brain-wide neural activity imaging in behaving zebrafish
PyZebrascope - an open-source Python platform for brain-wide neural activity imaging in behaving zebrafish

PyZebrascope - an open-source Python platform for brain-wide neural activity imaging in behaving zebrafish

An attempt at the implementation of GLOM, Geoffrey Hinton's paper for emergent part-whole hierarchies from data
An attempt at the implementation of GLOM, Geoffrey Hinton's paper for emergent part-whole hierarchies from data

GLOM TensorFlow This Python package attempts to implement GLOM in TensorFlow, which allows advances made by several different groups transformers, neu

HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation

HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation Official PyTroch implementation of HPRNet. HPRNet: Hierarchical Point Regre

minimizer-space de Bruijn graphs (mdBG) for whole genome assembly

rust-mdbg: Minimizer-space de Bruijn graphs (mdBG) for whole-genome assembly rust-mdbg is an ultra-fast minimizer-space de Bruijn graph (mdBG) impleme

Official implementation of the paper Visual Parser: Representing Part-whole Hierarchies with Transformers
Official implementation of the paper Visual Parser: Representing Part-whole Hierarchies with Transformers

Visual Parser (ViP) This is the official implementation of the paper Visual Parser: Representing Part-whole Hierarchies with Transformers. Key Feature

CFNet: Cascade and Fused Cost Volume for Robust Stereo Matching(CVPR2021)

CFNet(CVPR 2021) This is the implementation of the paper CFNet: Cascade and Fused Cost Volume for Robust Stereo Matching, CVPR 2021, Zhelun Shen, Yuch

Using this you can control your PC/Laptop volume by Hand Gestures (pinch-in, pinch-out) created with Python.
Using this you can control your PC/Laptop volume by Hand Gestures (pinch-in, pinch-out) created with Python.

Hand Gesture Volume Controller Using this you can control your PC/Laptop volume by Hand Gestures (pinch-in, pinch-out). Code Firstly I have created a

Comments
  • How to get the LPBA40_N4_RN dataset for the example

    How to get the LPBA40_N4_RN dataset for the example

    Thanks for your great work. I'm trying to run the example but stuck by the dataset. It seems there are multiple LPBA40 datasets on the give site LPBA40, and the data file format are not nii as in the example. Is there a downloadable LPBA40_N4_RN dataset or could you give some details on how to generate the dataset in the example?

    opened by mgcyung 2
  • ACTION REQUIRED: Microsoft needs this private repository to complete compliance info

    ACTION REQUIRED: Microsoft needs this private repository to complete compliance info

    There are open compliance tasks that need to be reviewed for your VoxHRNet repo.

    Action required: 4 compliance tasks

    To bring this repository to the standard required for 2021, we require administrators of this and all Microsoft GitHub repositories to complete a small set of tasks within the next 60 days. This is critical work to ensure the compliance and security of your microsoft GitHub organization.

    Please take a few minutes to complete the tasks at: https://repos.opensource.microsoft.com/orgs/microsoft/repos/VoxHRNet/compliance

    • The GitHub AE (GitHub inside Microsoft) migration survey has not been completed for this private repository
    • No Service Tree mapping has been set for this repo. If this team does not use Service Tree, they can also opt-out of providing Service Tree data in the Compliance tab.
    • No repository maintainers are set. The Open Source Maintainers are the decision-makers and actionable owners of the repository, irrespective of administrator permission grants on GitHub.
    • Classification of the repository as production/non-production is missing in the Compliance tab.

    You can close this work item once you have completed the compliance tasks, or it will automatically close within a day of taking action.

    If you no longer need this repository, it might be quickest to delete the repo, too.

    GitHub inside Microsoft program information

    More information about GitHub inside Microsoft and the new GitHub AE product can be found at https://aka.ms/gim.

    FYI: current admins at Microsoft include @scarlett2018, @EricChangMSR, @simon1727

    opened by microsoft-github-operations[bot] 0
Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
Implementation of the paper "Fine-Tuning Transformers: Vocabulary Transfer"

Transformer-vocabulary-transfer Implementation of the paper "Fine-Tuning Transfo

LEYA 13 Nov 30, 2022
EsViT: Efficient self-supervised Vision Transformers

Efficient Self-Supervised Vision Transformers (EsViT) PyTorch implementation for EsViT, built with two techniques: A multi-stage Transformer architect

Microsoft 352 Dec 25, 2022
Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks

Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks This repository contains a TensorFlow implementation of "

Jingwei Zheng 5 Jan 08, 2023
Unofficial implementation of MLP-Mixer: An all-MLP Architecture for Vision

MLP-Mixer: An all-MLP Architecture for Vision This repo contains PyTorch implementation of MLP-Mixer: An all-MLP Architecture for Vision. Usage : impo

Rishikesh (ऋषिकेश) 175 Dec 23, 2022
SIEM Logstash parsing for more than hundred technologies

LogIndexer Pipeline Logstash Parsing Configurations for Elastisearch SIEM and OpenDistro for Elasticsearch SIEM Why this project exists The overhead o

146 Dec 29, 2022
MMGeneration is a powerful toolkit for generative models, based on PyTorch and MMCV.

Documentation: https://mmgeneration.readthedocs.io/ Introduction English | 简体中文 MMGeneration is a powerful toolkit for generative models, especially f

OpenMMLab 1.3k Dec 29, 2022
ARAE-Tensorflow for Discrete Sequences (Adversarially Regularized Autoencoder)

ARAE Tensorflow Code Code for the paper Adversarially Regularized Autoencoders for Generating Discrete Structures by Zhao, Kim, Zhang, Rush and LeCun

19 Nov 12, 2021
PSANet: Point-wise Spatial Attention Network for Scene Parsing, ECCV2018.

PSANet: Point-wise Spatial Attention Network for Scene Parsing (in construction) by Hengshuang Zhao*, Yi Zhang*, Shu Liu, Jianping Shi, Chen Change Lo

Hengshuang Zhao 217 Oct 30, 2022
I-BERT: Integer-only BERT Quantization

I-BERT: Integer-only BERT Quantization HuggingFace Implementation I-BERT is also available in the master branch of HuggingFace! Visit the following li

Sehoon Kim 139 Dec 27, 2022
🛰️ List of earth observation companies and job sites

Earth Observation Companies & Jobs source Portals & Jobs Geospatial Geospatial jobs newsletter: ~biweekly newsletter with geospatial jobs by Ali Ahmad

Dahn 64 Dec 27, 2022
I decide to sync up this repo and self-critical.pytorch. (The old master is in old master branch for archive)

An Image Captioning codebase This is a codebase for image captioning research. It supports: Self critical training from Self-critical Sequence Trainin

Ruotian(RT) Luo 1.3k Dec 31, 2022
Tracking Progress in Question Answering over Knowledge Graphs

Tracking Progress in Question Answering over Knowledge Graphs Table of contents Question Answering Systems with Descriptions The QA Systems Table cont

Knowledge Graph Question Answering 47 Jan 02, 2023
[NeurIPS 2021] Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training

Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training Code for NeurIPS 2021 paper "Better Safe Than Sorry: Preventing Delu

Lue Tao 29 Sep 20, 2022
This is the official github repository of the Met dataset

The Met dataset This is the official github repository of the Met dataset. The official webpage of the dataset can be found here. What is it? This cod

Nikolaos-Antonios Ypsilantis 35 Dec 17, 2022
Template repository to build PyTorch projects from source on any version of PyTorch/CUDA/cuDNN.

The Ultimate PyTorch Source-Build Template Translations: 한국어 TL;DR PyTorch built from source can be x4 faster than a naïve PyTorch install. This repos

Joonhyung Lee/이준형 651 Dec 12, 2022
GANsformer: Generative Adversarial Transformers Drew A

GANformer: Generative Adversarial Transformers Drew A. Hudson* & C. Lawrence Zitnick Update: We released the new GANformer2 paper! *I wish to thank Ch

Drew Arad Hudson 1.2k Jan 02, 2023
This code is the implementation of the paper "Coherence-Based Distributed Document Representation Learning for Scientific Documents".

Introduction This code is the implementation of the paper "Coherence-Based Distributed Document Representation Learning for Scientific Documents". If

tsc 0 Jan 11, 2022
Simulation of self-focusing of laser beams in condensed media

What is it? Program for scientific research, which allows to simulate the phenomenon of self-focusing of different laser beams (including Gaussian, ri

Evgeny Vasilyev 13 Dec 24, 2022
Official implementation of CATs: Cost Aggregation Transformers for Visual Correspondence NeurIPS'21

CATs: Cost Aggregation Transformers for Visual Correspondence NeurIPS'21 For more information, check out the paper on [arXiv]. Training with different

Sunghwan Hong 120 Jan 04, 2023
Code for "On Memorization in Probabilistic Deep Generative Models"

On Memorization in Probabilistic Deep Generative Models This repository contains the code necessary to reproduce the experiments in On Memorization in

The Alan Turing Institute 3 Jun 09, 2022