Simulator for FRC 2022 challenge: Rapid React

Related tags

Deep Learningrrsim
Overview

rrsim

Simulator for FRC 2022 challenge: Rapid React

out-1.mp4

Usage

In order to run the simulator use the following:

python3 rrsim.py [config_path]

where config_path is the path to the json configuration (default value is default_configs/config.json).

Configurations

In order to configure game, field and robots, a config JSON file must be created. See default_configs directory for examples of configurations. The following are parameters that can be defined in the configuration:

Per-robot parameters:

Name Type Meaning Example
starting_position Tuple[float, float] Starting position of the robot [1.0, 2.0]
collect_time float Time it takes the robot to collect cargo 3.0
shoot_time float Time it takes the robot to shoot cargo 1.0
velocity float Drive velocity of the robot 5.0
accuracy float Shooting accuracy of the robot 0.95
alliance Enum{RED,BLUE} Alliance of the robot RED

Field parameters:

Name Type Meaning Example
cargo_hub_timeout float Time it takes from the moment cargo enters the hub to the moment it is collectable on the floor 10.0
match_length float Length of the simulation 120.0

Units for the values in the configurations can be seen in the units section.

In addition to the configuration JSON file, a cargo distribution CSV file is required. This file is basically a matrix of integers where every integer represents the probability (relative to the other integers) that a cargo will appear in the 1x1 meter square corresponding to that number in the matrix. A default distribution is supplied in the default_configs directory.

The Simulation

Once a configuration has been created (or selected) and the simulator was ran, A window will pop up which contains the actual simulator. This window consists of two sections. In the top - the field, in which robots are represented by squares and cargo by circles. In the bottom - the scoreboard, which is itself divided into three areas, from left to right - blue score, time since the beginning of the match, red score.

Units

rrsim uses the following units:

Quantity Units
Length/Distance Meters
Time Seconds
Velocity Meters per second

Planned Additions

  • Ability to fast forward the simulation.
  • Configurable cycle types for robots
    • Collect only from one side of the field
    • Play defence
    • Collect two balls at a time
    • Score to low hub
  • Penalty for having many robots in the same place
    • Something like "work 10% slower for every robot in your immediate vicinity".

And here are some additions that are probably too overkill to bother with:

  • Robot path planning
A library for performing coverage guided fuzzing of neural networks

TensorFuzz: Coverage Guided Fuzzing for Neural Networks This repository contains a library for performing coverage guided fuzzing of neural networks,

Brain Research 195 Dec 28, 2022
Repository for Driving Style Recognition algorithms for Autonomous Vehicles

Driving Style Recognition Using Interval Type-2 Fuzzy Inference System and Multiple Experts Decision Making Created by Iago PachĂȘco Gomes at USP - ICM

Iago Gomes 9 Nov 28, 2022
Parallel and High-Fidelity Text-to-Lip Generation; AAAI 2022 ; Official code

Parallel and High-Fidelity Text-to-Lip Generation This repository is the official PyTorch implementation of our AAAI-2022 paper, in which we propose P

Zhying 77 Dec 21, 2022
BirdCLEF 2021 - Birdcall Identification 4th place solution

BirdCLEF 2021 - Birdcall Identification 4th place solution My solution detail kaggle discussion Inference Notebook (best submission) Environment Use K

tattaka 42 Jan 02, 2023
A Simulated Optimal Intrusion Response Game

Optimal Intrusion Response An OpenAI Gym interface to a MDP/Markov Game model for optimal intrusion response of a realistic infrastructure simulated u

Kim Hammar 10 Dec 09, 2022
Loopy belief propagation for factor graphs on discrete variables, in JAX!

PGMax implements general factor graphs for discrete probabilistic graphical models (PGMs), and hardware-accelerated differentiable loopy belief propagation (LBP) in JAX.

Vicarious 62 Dec 23, 2022
Totally Versatile Miscellanea for Pytorch

Totally Versatile Miscellania for PyTorch Thomas Viehmann [email protected] Thi

Thomas Viehmann 428 Dec 28, 2022
Experiments with differentiable stacks and queues in PyTorch

Please use stacknn-core instead! StackNN This project implements differentiable stacks and queues in PyTorch. The data structures are implemented in s

Will Merrill 141 Oct 06, 2022
Code for all the Advent of Code'21 challenges mostly written in python

Advent of Code 21 Code for all the Advent of Code'21 challenges mostly written in python. They are not necessarily the best or fastest solutions but j

4 May 26, 2022
A model to classify a piece of news as REAL or FAKE

Fake_news_classification A model to classify a piece of news as REAL or FAKE. This python project of detecting fake news deals with fake and real news

Gokul Stark 1 Jan 29, 2022
Few-Shot-Intent-Detection includes popular challenging intent detection datasets with/without OOS queries and state-of-the-art baselines and results.

Few-Shot-Intent-Detection Few-Shot-Intent-Detection is a repository designed for few-shot intent detection with/without Out-of-Scope (OOS) intents. It

Jian-Guo Zhang 73 Dec 26, 2022
Lingvo is a framework for building neural networks in Tensorflow, particularly sequence models.

Lingvo is a framework for building neural networks in Tensorflow, particularly sequence models.

2.7k Jan 05, 2023
Minimal PyTorch implementation of YOLOv3

A minimal PyTorch implementation of YOLOv3, with support for training, inference and evaluation.

Erik Linder-Norén 6.9k Dec 29, 2022
Safe Control for Black-box Dynamical Systems via Neural Barrier Certificates

Safe Control for Black-box Dynamical Systems via Neural Barrier Certificates Installation Clone the repository: git clone https://github.com/Zengyi-Qi

Zengyi Qin 3 Oct 18, 2022
The repo of Feedback Networks, CVPR17

Feedback Networks http://feedbacknet.stanford.edu/ Paper: Feedback Networks, CVPR 2017. Amir R. Zamir*,Te-Lin Wu*, Lin Sun, William B. Shen, Bertram E

Stanford Vision and Learning Lab 87 Nov 19, 2022
Code for our paper A Transformer-Based Feature Segmentation and Region Alignment Method For UAV-View Geo-Localization,

FSRA This repository contains the dataset link and the code for our paper A Transformer-Based Feature Segmentation and Region Alignment Method For UAV

Dmmm 32 Dec 18, 2022
Code for "Typilus: Neural Type Hints" PLDI 2020

Typilus A deep learning algorithm for predicting types in Python. Please find a preprint here. This repository contains its implementation (src/) and

47 Nov 08, 2022
Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering (NAACL 2021)

Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering Abstract In open-domain question answering (QA), retrieve-and-read mec

Clova AI Research 34 Apr 13, 2022
Revisiting, benchmarking, and refining Heterogeneous Graph Neural Networks.

Heterogeneous Graph Benchmark Revisiting, benchmarking, and refining Heterogeneous Graph Neural Networks. Roadmap We organize our repo by task, and on

THUDM 176 Dec 17, 2022
Awesome Graph Classification - A collection of important graph embedding, classification and representation learning papers with implementations.

A collection of graph classification methods, covering embedding, deep learning, graph kernel and factorization papers

Benedek Rozemberczki 4.5k Jan 01, 2023